Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog

Technology

Technology is the engine that drives today’s world, blending intelligence, creativity, and connection in everything we do. At its core, technology is about using tools and ideas—like artificial intelligence (AI), machine learning, and advanced gadgets—to solve real problems, improve lives, and spark new possibilities.

Share
  • Facebook
1 Follower
1k Answers
185 Questions
Home/Technology/Page 4

Qaskme Latest Questions

daniyasiddiquiEditor’s Choice
Asked: 17/11/2025In: Stocks Market, Technology

What sectors will benefit most from the next wave of AI innovation?

the next wave of AI innovation

ai innovationartificial intelligenceautomationdigital transformationfuture industrietech trends
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 17/11/2025 at 3:29 pm

    Healthcare diagnostics, workflows, drug R&D, and care delivery Why: healthcare has huge amounts of structured and unstructured data (medical images, EHR notes, genomics), enormous human cost when errors occur, and big inefficiencies in admin work. How AI helps: faster and earlier diagnosis fromRead more

    Healthcare diagnostics, workflows, drug R&D, and care delivery

    • Why: healthcare has huge amounts of structured and unstructured data (medical images, EHR notes, genomics), enormous human cost when errors occur, and big inefficiencies in admin work.
    • How AI helps: faster and earlier diagnosis from imaging and wearable data, AI assistants that reduce clinician documentation burden, drug discovery acceleration, triage and remote monitoring. Microsoft, Nuance and other players are shipping clinician copilots and voice/ambient assistants that cut admin time and improve documentation workflows.
    • Upside: better outcomes, lower cost per patient, faster R&D cycles.
    • Risks: bias in training data, regulatory hurdles, patient privacy, and over-reliance on opaque models.

    Finance trading, risk, ops automation, personalization

    • Why: financial services run on patterns and probability; data is plentiful and decisions are high-value.
    • How AI helps: smarter algorithmic trading, real-time fraud detection, automated compliance (RegTech), risk modelling, and hyper-personalized wealth/advisory services. Large incumbents are deploying ML for everything from credit underwriting to trade execution.
    • Upside: margin expansion from automation, faster detection of bad actors, and new product personalization.
    • Risks: model fragility in regime shifts, regulatory scrutiny, and systemic risk if many players use similar models.

    Manufacturing (Industry 4.0) predictive maintenance, quality, and digital twins

    • Why: manufacturing plants generate sensor/IOT time-series data and lose real money to unplanned downtime and defects.
    • How AI helps: predictive maintenance that forecasts failures, computer-vision quality inspection, process optimization, and digital twins that let firms simulate changes before applying them to real equipment. Academic and industry work shows measurable downtime reductions and efficiency gains.
    • Upside: big cost savings, higher throughput, longer equipment life.
    • Risks: integration complexity, data cleanliness, and up-front sensor/IT investment.

    Transportation & Logistics routing, warehouses, and supply-chain resilience

    • Why: logistics is optimization-first: routing, inventory, demand forecasting all fit AI. The cost of getting it wrong is large and visible.
    • How AI helps: dynamic route optimization, demand forecasting, warehouse robotics orchestration, and better end-to-end visibility that reduces lead times and stockouts. Market analyses show explosive investment and growth in AI logistics tools.
    • Upside: lower delivery times/costs, fewer lost goods, and better margins for retailers and carriers.
    • Risks: brittle models in crisis scenarios, data-sharing frictions across partners, and workforce shifts.

    Cybersecurity detection, response orchestration, and risk scoring

    • Why: attackers are using AI too, so defenders must use AI to keep up. There’s a continual arms race; automated detection and response scale better than pure human ops.
    • How AI helps: anomaly detection across networks, automating incident triage and playbooks, and reducing time-to-contain. Security vendors and threat reports make clear AI is reshaping both offense and defense.
    • Upside: faster reaction to breaches and fewer false positives.
    • Risks: adversarial AI, deepfakes, and attackers using models to massively scale attacks.

    Education personalized tutoring, content generation, and assessment

    • Why: learning is inherently personal; AI can tailor instruction, freeing teachers for mentorship and higher-value tasks.
    • How AI helps: intelligent tutoring systems that adapt pace/difficulty, automated feedback on writing and projects, and content generation for practice exercises. Early studies and product rollouts show improved engagement and learning outcomes.
    • Upside: scalable, affordable tutoring and faster skill acquisition.
    • Risks: equity/ access gaps, data privacy for minors, and loss of important human mentoring if over-automated.

    Retail & E-commerce personalization, demand forecasting, and inventory

    • Why: retail generates behavioral data at scale (clicks, purchases, returns). Personalization drives conversion and loyalty.
    • How AI helps: product recommendation engines, dynamic pricing, fraud prevention, and micro-fulfillment optimization. Result: higher AOV (average order value), fewer stockouts, better customer retention.
    • Risks: privacy backlash, algorithmic bias in offers, and dependence on data pipelines.

    Energy & Utilities grid optimization and predictive asset management

    • Why: grids and generation assets produce continuous operational data; balancing supply/demand with renewables is a forecasting problem.
    • How AI helps: demand forecasting, predictive asset maintenance for turbines/transformers, dynamic load balancing for renewables and storage. That improves reliability and reduces cost per MWh.
    • Risks: safety-critical consequences if models fail; need for robust human oversight.

    Agriculture precision farming, yield prediction, and input optimization

    • Why: small improvements in yield or input efficiency scale to big value for food systems.
    • How AI helps: satellite/drone imagery analysis for crop health, precision irrigation/fertiliser recommendations, and yield forecasting that stabilizes supply chains.
    • Risks: access for smallholders, data ownership, and capital costs for sensors.

    Media, Entertainment & Advertising content creation, discovery, and monetization

    • Why: generative models change how content is made and personalized. Attention is the currency here.
    • How AI helps: automated editing/augmentation, personalized feeds, ad targeting optimization, and low-cost creation of audio/visual assets.
    • Risks: copyright/creative ownership fights, content authenticity issues, and platform moderation headaches.

    Legal & Professional Services automation of routine analysis and document drafting

    • Why: legal work has lots of document patterns and discovery tasks where accuracy plus speed is valuable.
    • How AI helps: contract review, discovery automation, legal research, and first-draft memos letting lawyers focus on strategy.
    • Risks: malpractice risk if models hallucinate; firms must validate outputs carefully.

    Common cross-sector themes (the human part you should care about)

    1. Augmentation, not replacement (mostly). Across sectors the most sustainable wins come where AI augments expert humans (doctors, pilots, engineers), removing tedium and surfacing better decisions.

    2. Data + integration = moat. Companies that own clean, proprietary, and well-integrated datasets will benefit most.

    3. Regulation & trust matter. Healthcare, finance, energy these are regulated domains. Compliance, explainability, and robust testing are table stakes.

    4. Operationalizing is the hard part. Building a model is easy compared to deploying it in a live, safety-sensitive workflow with monitoring, retraining, and governance.

    5. Economic winners will pair models with domain expertise. Firms that combine AI talent with industry domain experts will outcompete those that just buy off-the-shelf models.

    Quick practical advice (for investors, product folks, or job-seekers)

    • Investors: watch companies that own data and have clear paths to monetize AI (e.g., healthcare SaaS with clinical data, logistics platforms with routing/warehouse signals).

    • Product teams: start with high-pain, high-frequency tasks (billing, triage, inspection) and build from there.

    • Job seekers: learn applied ML tools plus domain knowledge (e.g., ML for finance, or ML for radiology) hybrid skills are prized.

    TL;DR (short human answer)

    The next wave of AI will most strongly uplift healthcare, finance, manufacturing, logistics, cybersecurity, and education because those sectors have lots of data, clear financial pain from errors/inefficiencies, and big opportunities for automation and augmentation. Expect major productivity gains, but also new regulatory, safety, and adversarial challenges. 

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 137
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 14/11/2025In: Technology

Are we moving towards smaller, faster, domain-specialized LLMs instead of giant trillion-parameter models?

we moving towards smaller, faster, do ...

aiaitrendsllmsmachinelearningmodeloptimizationsmallmodels
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 14/11/2025 at 4:54 pm

    1. The early years: Bigger meant better When GPT-3, PaLM, Gemini 1, Llama 2 and similar models came, they were huge.The assumption was: “The more parameters a model has, the more intelligent it becomes.” And honestly, it worked at first: Bigger models understood language better They solved tasks morRead more

    1. The early years: Bigger meant better

    When GPT-3, PaLM, Gemini 1, Llama 2 and similar models came, they were huge.
    The assumption was:

    “The more parameters a model has, the more intelligent it becomes.”

    And honestly, it worked at first:

    • Bigger models understood language better

    • They solved tasks more clearly

    • They could generalize across many domains

    So companies kept scaling from billions → hundreds of billions → trillions of parameters.

    But soon, cracks started to show.

    2. The problem: Giant models are amazing… but expensive and slow

    Large-scale models come with big headaches:

    High computational cost

    • You need data centers, GPUs, expensive clusters to run them.

    Cost of inference

    • Running one query can cost cents too expensive for mass use.

     Slow response times

    Bigger models → more compute → slower speed

    This is painful for:

    • real-time apps

    • mobile apps

    • robotics

    • AR/VR

    • autonomous workflows

    Privacy concerns

    • Enterprises don’t want to send private data to a huge central model.

    Environmental concerns

    • Training a trillion-parameter model consumes massive energy.
    • This pushed the industry to rethink the strategy.

    3. The shift: Smaller, faster, domain-focused LLMs

    Around 2023–2025, we saw a big change.

    Developers realised:

    “A smaller model, trained on the right data for a specific domain, can outperform a gigantic general-purpose model.”

    This led to the rise of:

     Small models (SMLLMs) 7B, 13B, 20B parameter range

    • Examples: Gemma, Llama 3.2, Phi, Mistral.

    Domain-specialized small models

    • These outperform even GPT-4/GPT-5-level models within their domain:
    • Medical AI models

    • Legal research LLMs

    • Financial trading models

    • Dev-tools coding models

    • Customer service agents

    • Product-catalog Q&A models

    Why?

    Because these models don’t try to know everything they specialize.

    Think of it like doctors:

    A general physician knows a bit of everything,but a cardiologist knows the heart far better.

    4. Why small LLMs are winning (in many cases)

    1) They run on laptops, mobiles & edge devices

    A 7B or 13B model can run locally without cloud.

    This means:

    • super fast

    • low latency

    • privacy-safe

    • cheap operations

    2) They are fine-tuned for specific tasks

    A 20B medical model can outperform a 1T general model in:

    • diagnosis-related reasoning

    • treatment recommendations

    • medical report summarization

    Because it is trained only on what matters.

    3) They are cheaper to train and maintain

    • Companies love this.
    • Instead of spending $100M+, they can train a small model for $50k–$200k.

    4) They are easier to deploy at scale

    • Millions of users can run them simultaneously without breaking servers.

    5) They allow “privacy by design”

    Industries like:

    • Healthcare

    • Banking

    • Government

    …prefer smaller models that run inside secure internal servers.

    5. But are big models going away?

    No — not at all.

    Massive frontier models (GPT-6, Gemini Ultra, Claude Next, Llama 4) still matter because:

    • They push scientific boundaries

    • They do complex reasoning

    • They integrate multiple modalities

    • They act as universal foundation models

    Think of them as:

    • “The brains of the AI ecosystem.”

    But they are not the only solution anymore.

    6. The new model ecosystem: Big + Small working together

    The future is hybrid:

     Big Model (Brain)

    • Deep reasoning, creativity, planning, multimodal understanding.

    Small Models (Workers)

    • Fast, specialized, local, privacy-safe, domain experts.

    Large companies are already shifting to “Model Farms”:

    • 1 big foundation LLM

    • 20–200 small specialized LLMs

    • 50–500 even smaller micro-models

    Each does one job really well.

    7. The 2025 2027 trend: Agentic AI with lightweight models

    We’re entering a world where:

    Agents = many small models performing tasks autonomously

    Instead of one giant model:

    • one model reads your emails

    • one summarizes tasks

    • one checks market data

    • one writes code

    • one runs on your laptop

    • one handles security

    All coordinated by a central reasoning model.

    This distributed intelligence is more efficient than having one giant brain do everything.

    Conclusion (Humanized summary)

    Yes the industry is strongly moving toward smaller, faster, domain-specialized LLMs because they are:

    • cheaper

    • faster

    • accurate in specific domains

    • privacy-friendly

    • easier to deploy on devices

    • better for real businesses

    But big trillion-parameter models will still exist to provide:

    • world knowledge

    • long reasoning

    • universal coordination

    So the future isn’t about choosing big OR small.

    It’s about combining big + tailored small models to create an intelligent ecosystem just like how the human body uses both a brain and specialized organs.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 127
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 12/11/2025In: Technology

What role do tokenization and positional encoding play in LLMs?

tokenization and positional encoding ...

deeplearningllmsnlppositionalencodingtokenizationtransformers
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 12/11/2025 at 2:53 pm

    The World of Tokens Humans read sentences as words and meanings. Consider it like breaking down a sentence into manageable bits, which the AI then knows how to turn into numbers. “AI is amazing” might turn into tokens: → [“AI”, “ is”, “ amazing”] Or sometimes even smaller: [“A”, “I”, “ is”, “ ama”,Read more

    The World of Tokens

    • Humans read sentences as words and meanings.
    • Consider it like breaking down a sentence into manageable bits, which the AI then knows how to turn into numbers.
    • “AI is amazing” might turn into tokens: → [“AI”, “ is”, “ amazing”]
    • Or sometimes even smaller: [“A”, “I”, “ is”, “ ama”, “zing”]
    • Thus, each token is a small unit of meaning: either a word, part of a word, or even punctuation, depending on how the tokenizer was trained.
    • Similarly, LLMs can’t understand sentences until they first convert text into numerical form because AI models only work with numbers, that is, mathematical vectors.

    Each token gets a unique ID number, and these numbers are turned into embeddings, or mathematical representations of meaning.

     But There’s a Problem Order Matters!

    Let’s say we have two sentences:

    • “The dog chased the cat.”
    • “The cat chased the dog.”

    They use the same words, but the order completely changes the meaning!

    A regular bag of tokens doesn’t tell the AI which word came first or last.

    That would be like giving somebody pieces of the puzzle and not indicating how to lay them out; they’d never see the picture.

    So, how does the AI discern the word order?

    An Easy Analogy: Music Notes

    Imagine a song.

    Each of them, separately, is just a sound.

    Now, imagine if you played them out of order the music would make no sense!

    Positional encoding is like the sheet music, which tells the AI where each note (token) belongs in the rhythm of the sentence.

    Position Selection – How the Model Uses These Positions

    Once tokens are labeled with their positions, the model combines both:

    • What the word means – token embedding
    • Where the word appears – positional encoding

    These two signals together permit the AI to:

    • Recognize relations between words: “who did what to whom”.
    • Predict the next word, based on both meaning and position.

     Why This Is Crucial for Understanding and Creativity

    • Without tokenization, the model couldn’t read or understand words.
    • Without positional encoding, the model couldn’t understand context or meaning.

    Put together, they represent the basis for how LLMs understand and generate human-like language.

    In stories,

    • they help the AI track who said what and when.
    • In poetry or dialogue, they serve to provide rhythm, tone, and even logic.

    This is why models like GPT or Gemini can write essays, summarize books, translate languages, and even generate code-because they “see” text as an organized pattern of meaning and order, not just random strings of words.

     How Modern LLMs Improve on This

    Earlier models had fixed positional encodings meaning they could handle only limited context (like 512 or 1024 tokens).

    But newer models (like GPT-4, Claude 3, Gemini 2.0, etc.) use rotary or relative positional embeddings, which allow them to process tens of thousands of tokens  entire books or multi-page documents while still understanding how each sentence relates to the others.

    That’s why you can now paste a 100-page report or a long conversation, and the model still “remembers” what came before.

    Bringing It All Together

    •  A Simple Story Tokenization is teaching it what words are, like: “These are letters, this is a word, this group means something.”
    • Positional encoding teaches it how to follow the order, “This comes first, this comes next, and that’s the conclusion.”
    • Now it’s able to read a book, understand the story, and write one back to you-not because it feels emotions.

    but because it knows how meaning changes with position and context.

     Final Thoughts

    If you think of an LLM as a brain, then:

    • Tokenization is like its eyes and ears, how it perceives words and converts them into signals.
    • Positional encoding is to the transformer like its sense of time and sequence how it knows what came first, next, and last.

    Together, they make language models capable of something almost magical  understanding human thought patterns through math and structure.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 126
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 12/11/2025In: Technology

How are agentic AI systems revolutionizing automation and workflows?

automation and workflows

agenticaiaiautomationaiinbusinessartificialintelligenceautonomousagentsworkflowoptimization
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 12/11/2025 at 2:00 pm

    Agentic AI Systems: What are they? The term "agentic" derives from agency the capability to act independently with purpose and decision-making power. Therefore, an agentic AI does not simply act upon instructions, but is capable of: Understanding goals, not just commands Breaking down complex tasksRead more

    Agentic AI Systems: What are they?

    The term “agentic” derives from agency the capability to act independently with purpose and decision-making power.

    Therefore, an agentic AI does not simply act upon instructions, but is capable of:

    • Understanding goals, not just commands
    • Breaking down complex tasks into steps
    • Working autonomously with tools and APIs
    • Learning from feedback and past outcomes
    • Collaboration with humans or other agents

    Or, in simple terms: agentic AI turns AI from a passive assistant into an active doer.

    Instead of asking ChatGPT to “write an email”, for example, an agentic system would draft, review and send it, schedule followups, and even summarize responses all on its own.

    How It’s Changing Workflows

    Agentic AI systems in industries all over the world are becoming invisible teammates, quietly optimizing tasks that used to drain human time and focus.

    1. Enterprise Operations

    Think of a virtual employee who can read emails, extract tasks, schedule meetings, and update dashboards.

    Agentic AI now can:

    • Analyze financial reports and prepare summaries.
    • Coordinate between HR, finance, and project management systems.
    • Dynamically trigger workflow automation, not just on fixed triggers.
    • Huge gains in productivity, reduced operational lag, and better accuracy in making decisions.

    2. Software Development

    Developers are seeing the birth of AI pair programmers with agency.

    With Devin (Cognition), OpenAI’s o1 models, and GitHub Copilot Agents, one can now:

    • Plan multi-step coding tasks.
    • Automatically debug errors.
    • Run the test suites, deploy to staging.
    • Even learn your code base style over time.
    • Rather than writing snippets, these AIs can manage entire development lifecycles.

    It’s like having a 24/7 intern who never sleeps and continually improves.

    3. Healthcare and Life Sciences

    Agentic AI in healthcare is being used to coordinate entire clinical workflows, not just analyze data.

    • For instance,
    • Reviewing patient data and flagging anomalies.
    • Scheduling lab tests, or sending automated reminders.
    • Prepare the draft medical summaries for doctors’ review.
    • Integrating data across EHR systems and public health dashboards.

    Result: Doctors spend less time on documentation and more time with the patients.

    It’s augmenting, not replacing, human judgment.

    4. Marketing and Content Operations

    Today, marketing teams deploy agentic AI to run full campaigns end-to-end:

    • Trending topics research.
    • Writing SEO content.
    • Designing visuals using AI tools.
    • Posting across multiple platforms.
    • Track engagement and optimize ads.

    Instead of five individuals overseeing content pipelines, one strategist today can coordinate a team of AI agents, each handling a piece of the creative and analytical process.

    5. Customer Support and CRM

    Agentic AI systems can now serve as autonomous support agents for more than just answering FAQs; they are also able:

    • Fetch customer data from CRMs like Salesforce.
    • Begin refund workflows.
    • Escalate or close tickets intelligently.
    • Learn from past resolutions to improve tone and accuracy.

    This creates a human-like service experience that’s faster, context-aware, and personalized.

    The Core Pillars Behind Agentic AI

    Agentic systems rely on several evolving capabilities that set them apart from standard AI assistants:

    • Reasoning & Planning – The ability to decompose goals into sub-tasks.
    • Tool use: dynamic integration of APIs, databases, and web interfaces.
    • Memory is the storage of past decisions and learning from them.
    • Collaboration: Interaction with other agents or humans in a shared environment.
    • Feedback Loops: Continuously improving performance by reinforcement or human feedback.

    These pillars together will enable AIs to be proactive and not merely reactive.

    Example: An Agentic AI in Action

    Let’s consider a project manager agent in a company:

    • It checks the task board every morning.
    • Notices delays in two modules.
    • Analyzes commits from GitHub and detects bottlenecks.
    • Pings developers politely on Slack.
    • Produces a short summary and forwards it to your boss.
    • Updates the dashboard automatically.

    No human had to tell it what to do-it just knew what needed to be done and took appropriate actions safely and transparently.

     Ethics, Oversight, and Guardrails

    Setting firm ethical limits for the action of autonomous systems is also very important.

    Future deployments will focus on:

    • Explainability: AI has to provide reasons for the steps it took.
    • Accountability: Keeping audit trails of actions taken.
    • Human-in-the-loop: Essentially, it makes sure oversight is maintained in critical decisions.
    • Data Privacy: Preventing agents from overreaching in sensitive areas.

    Agentic AI should enable, not replace; assist, not dominate.

    Road to the Future

    • Soon, there will be a massive increase in AI-driven orchestration layers-applications that support the collaboration of several specialized agents under human supervision.
    • Businesses will build AI departments the same way they once built IT departments.
    • Personal productivity tools will become AI co-managers, prioritizing and executing your day and desired goals.
    • Governments and enterprises will deploy regulatory AIs to ensure compliance automatically.

    We’re moving toward a world where it’s not about “humans using AI tools to get work done,” but “coordination between humans and AI agents” — a hybrid workforce of creativity and computation.

    Concluding thoughts

    Agentic AI is more than just another buzzword; it’s the inflection point whereby automation actually becomes intelligent and self-directed.

    It’s about building digital systems that can:

    • Understand intent
    • Act responsibly
    • Learn from results
    • And scale human potential

     In other words, the future of work won’t be about humans versus AI; it will be about humans with AI agents, working side by side to handle everything from coding to healthcare to climate science.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 113
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 12/11/2025In: Technology

What’s the future of AI personalization and memory-based agents?

the future of AI personalization and ...

aiagentsaipersonalizationartificialintelligencefutureofaimachinelearningmemorybasedai
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 12/11/2025 at 1:18 pm

    Personal vs. Generic Intelligence: The Shift Until recently, the majority of AI systems-from chatbots to recommendation engines, have all been designed to respond identically to everybody. You typed in your question, it processed it, and gave you an answer-without knowing who you are or what you likRead more

    Personal vs. Generic Intelligence: The Shift

    Until recently, the majority of AI systems-from chatbots to recommendation engines, have all been designed to respond identically to everybody. You typed in your question, it processed it, and gave you an answer-without knowing who you are or what you like.

    But that is changing fast, as the next generation of AI models will have persistent memory, allowing them to:

    • Remember the history, tone, and preferences.
    • Adapt the style, depth, and content to your personality.
    • Gain a long-term sense of your goals, values, and context.

    That is, AI will evolve from being a tool to something more akin to a personal cognitive companion, one that knows you better each day.

    WHAT ARE MEMORY-BASED AGENTS?

    A memory-based agent is an AI system that does not just process prompts in a stateless manner but stores and recalls the relevant experiences over time.

    For example:

    • A ChatGPT or Copilot with memory might recall your style of coding, preferred frameworks, or common mistakes.
    • Your health records, lists of medication preferences, and symptoms may be remembered by the healthcare AI assistant to offer you contextual advice.
    • Our business AI agent could remember project milestones, team updates, and even the tone of your communication. It would sound like responses from our colleague.
    1. This involves an organized memory system: short-term for immediate context and long-term for durable knowledge, much like the human brain.

    How it works: technical

    Modern memory-based agents are built using a combination of:

    • Vector databases enable semantic storage and the ability to retrieve past conversations.
    • Embeddings are what allow the AI to “understand” meaning and not just keywords.
    • Context management: A process of efficient filtering and summarization of memory so that it does not overload the model.
    • Preference learning: fine-tuning to respond to style, tone, or the needs of an individual.

    Taken together, these create continuity. Instead of starting fresh every time you talk, your AI can say, “Last time you were debugging a Spring Boot microservice — want me to resume where we left off?

    TM Human-Like Interaction and Empathy

    AI personalization will move from task efficiency to emotional alignment.

    Suppose:

    • Your AI tutor remembers where you struggle in math and adjusts the explanations accordingly.
    • Your writing assistant knows your tone and edits emails or blogs to make them sound more like you.
    • Your wellness app remembers your stressors and suggests breathing exercises a little before your next big meeting.

    This sort of empathy does not mean emotion; it means contextual understanding-the ability to align responses with your mood, situation, and goals.

     Privacy, Ethics & Boundaries

    • Personalization inevitably raises questions of data privacy and digital consent.

    If AI is remembering everything about you, then whose memory is it? You should be able to:

    • Review and delete your stored interactions.
    • Choose what’s remembered and what’s forgotten.
    • Control where your data is stored: locally, encrypted cloud, or device memory.

    Future regulations will surely include “Explainable Memory”-the need for AI to be transparent about what it knows about you and how it uses that information.

    Real-World Use Cases Finally Emerge

    • Health care: AI-powered personal coaches that monitor fitness, mental health, or chronic diseases.
    • Education: AI tutors who adapt to the pace, style, and emotional state of each student.
    • Enterprise: project memory assistants remembering deadlines, reports, and work culture.
    • E-commerce: Personal shoppers who actually know your taste and purchase history.
    • Smart homes: Voice assistants know the routine of a family and modify lighting, temperature, or reminders accordingly.

    These are not far-off dreams; early prototypes are already being tested by OpenAI, Anthropic, and Google DeepMind.

     The Long Term Vision: “Lifelong AI Companions”

    Over the course of the coming 3-5 years, memory-based AI will be combined with Agentic systems capable of taking action on your behalf autonomously.

    Your virtual assistant can:

    • Schedule meetings, book tickets, or automatically send follow-up e-mails.
    • Learn your career path and suggest upskilling courses.
    • Build personal dashboards to summarize your week and priorities.

    This “Lifelong AI Companion” may become a mirror to your professional and personal evolution, remembering not only facts but your journey.

    The Human Side: Connecting, Not Replacing

    The key challenge will be to design the systems to support and not replace human relationships. Memory-based AI has to magnify human potential, not cocoon us inside algorithmic bubbles. Undoubtedly, the healthiest future of all is one where AI understands context but respects human agency – helps us think better, not for us.

    Final Thoughts

    The future of AI personalization and memory-based agents is deeply human-centric. We are building contextual intelligence that learns your world, adapts to your rhythm, and grows with your purpose instead of cold algorithms. It’s the next great evolution: From “smart assistants” ➜ to “thinking partners” ➜ to “empathetic companions.” The difference won’t just be in what AI does but in how well it remembers who you are.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 117
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 09/11/2025In: Technology

What are “agentic AI” or AI agents, and how is this trending in model design?

“agentic AI” or AI agents,

aiagentsautonomousaigenerativeaimodeldesign
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 09/11/2025 at 4:57 pm

     What are AI Agents / Agentic AI? At the heart: An AI Agent (in this context) is an autonomous software entity that can perform tasks, make decisions, use tools/APIs, and act in an environment with some degree of independence (rather than just producing a prediction. Agentic AI, then, is the broaderRead more

     What are AI Agents / Agentic AI?

    At the heart:

    • An AI Agent (in this context) is an autonomous software entity that can perform tasks, make decisions, use tools/APIs, and act in an environment with some degree of independence (rather than just producing a prediction.

    • Agentic AI, then, is the broader paradigm of systems built from or orchestrating such agents — with goal-driven behaviour, planning, memory, tool use, and minimal human supervision. 

    In plain language:
    Imagine a virtual assistant that doesn’t just answer your questions, but chooses goals, breaks them into subtasks, picks tools/APIs to use, monitors progress and the environment, adapts if something changes — all with far less direct prompting. That’s the idea of an agentic AI system.

     Why this is a big deal / Why it’s trending

    1. Expanding from “respond” to “act”
      Traditional AI (even the latest generative models) is often reactive: you ask, it answers. Agentic AI can be proactive it anticipates, plans, acts. For example, not just summarising an article but noticing a related opportunity and triggering further actions.

    2. Tooling + orchestration + reasoning
      When you combine powerful foundation models (LLMs) with ways to call external APIs, manipulate memory/context, and plan multi-step workflows, you get agentic behaviours. Many companies are recognising this as the next wave beyond “just generate text/image”. 

    3. Enterprise/Operational use-cases
      Because you’re moving into systems that can integrate with business processes, act on your behalf, reduce human‐bottlenecks, the appeal is huge (in customer service, IT operations, finance, logistics). 

    4. Research & product momentum
      The terms “agentic AI” and “AI agents” are popping up as major themes in 2024-25 research and industry announcements — this means more tooling, frameworks, experimentation. For example.

     How this applies to your developer worldview (especially given your full-stack / API / integration role)

    Since you work with PHP, Laravel, Node.js, Webflow, API integration, dashboards etc., here’s how you might think in practice about agentic AI:

    • Integration: An agent could use an LLM “brain” + API clients (your backend) + tools (database queries, dashboard updates) to perform an end-to-end “task”. For example: For your health-data dashboard work (PM-JAY etc), an agentic system might monitor data inflows, detect anomalies, trigger alerts, generate a summary report, and even dispatch to stakeholders  instead of manual checks + scripts.

    • Orchestration: You might build micro-services for “fetch data”, “run analytics”, “generate narrative summary”, “push to PowerBI/Superset”. An agent orchestration layer could coordinate those dynamically based on context.

    • Memory/context: The agent may keep “state” (what has been done, what was found, what remains) and use it for next steps — e.g., in a health dashboard system, remembering prior decisions or interventions.

    • Goal-driven workflows: Instead of running a dashboard ad-hoc, define a goal like “Ensure X state agencies have updated dashboards by EOD”. The agent sets subtasks, uses your APIs, updates, reports completion.

    • Risk & governance: Since you’ve touched many projects with compliance/data aspects (health data), using agentic AI raises visibility of risks (autonomous actions in sensitive domains). So architecture must include logging, oversight layers, fallback to humans.

     What are the challenges / what to watch out for

    Even though agentic AI is exciting, it’s not without caveats:

    • Maturity & hype: Many systems are still experimental. For example, a recent report suggests many agentic AI projects may be scrapped due to unclear ROI. 

    • Trust & transparency: If agents act autonomously, you need clear audit logs, explainability, controls. Without this, you risk unpredictable behaviour.

    • Integration complexity: Connecting LLMs, tools, memory, orchestration is non-trivial — especially in enterprise/legacy systems.

    • Safety & governance: When agents have power to act (e.g., change data, execute workflows), you need guardrails for ethical, secure decision-making.

    • Resource/Operational cost: Running multiple agents, accessing external systems, maintaining memory/context can be expensive and heavy compared to “just run a model”.

    • Skill gaps: Developers need to think in terms of agent architecture (goals, subtasks, memory, tool invocation) not just “build a model”. The talent market is still maturing. 

    Why this matters in 2025+ and for your work

    Because you’re deep into building systems (web/mobile/API, dashboards, data integration), agentic AI offers a natural next-level moving from “data in → dashboard out” to “agent monitors data → detects a pattern → triggers new data flow → updates dashboards → notifies stakeholders”. It represents a shift from reactive to proactive, from manual orchestration to autonomous workflow.

    In domains like health-data analytics (which you’re working in with PM-JAY, immunization dashboards) it’s especially relevant you could build agentic layers that watch for anomalies, initiate investigation, generate stakeholder reports, coordinate cross-system workflows (e.g., state-to-central convergence). That helps turn dashboards from passive insight tools into active, operational systems.

     Looking ahead what’s the trend path?

    • Frameworks & tooling will become more mature: More libraries, standards (for agent memory, tool invocation, orchestration) will emerge.

    • Multi-agent systems: Not just one agent, but many agents collaborating, handing off tasks, sharing memory.

    • Better integration with foundation models: Agents will leverage LLMs not just for generation, but for reasoning/planning across workflows.

    • Governance & auditability will be baked in: As these systems move into mission-critical uses (finance, healthcare), regulation and governance will follow.

    • From “assistant” to “operator”: Instead of “help me write a message”, the agent will “handle this entire workflow” with supervision.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 147
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 09/11/2025In: Technology

What is the difference between traditional AI/ML and generative AI / large language models (LLMs)?

the difference between traditional AI ...

artificialintelligencedeeplearninggenerativeailargelanguagemodelsllmsmachinelearning
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 09/11/2025 at 4:27 pm

    The Big Picture Consider traditional AI/ML as systems learning patterns for predictions, whereas generative AI/LLMs learn representations of the world with which to generate novel things: text, images, code, music, or even steps in reasoning. In short: Traditional AI/ML → Predicts. Generative AI/LLMRead more

    The Big Picture

    Consider traditional AI/ML as systems learning patterns for predictions, whereas generative AI/LLMs learn representations of the world with which to generate novel things: text, images, code, music, or even steps in reasoning.

    In short:

    • Traditional AI/ML → Predicts.
    • Generative AI/LLMs → create and comprehend.

     Traditional AI/ Machine Learning — The Foundation

    1. Purpose

    Traditional AI and ML are mainly discriminative, meaning they classify, forecast, or rank things based on existing data.

    For example:

    • Predict whether an email is spam or not.
    • Detect a tumor in an MRI scan.
    • Estimate tomorrow’s temperature.
    • Recommend the product that a user is most likely to buy.

    Focus is placed on structured outputs obtained from structured or semi-structured data.

    2. How It Works

    Traditional ML follows a well-defined process:

    • Collect and clean labeled data (inputs + correct outputs).
    • Feature selection selects features-the variables that truly count.
    • Train a model, such as logistic regression, random forest, SVM, or gradient boosting.
    • Optimize metrics, whether accuracy, precision, recall, F1 score, RMSE, etc.
    • Deploy and monitor for prediction quality.

    Each model is purpose-built, meaning you train one model per task.
    If you want to perform five tasks, say, detect fraud, recommend movies, predict churn, forecast demand, and classify sentiment, you build five different models.

    3. Examples of Traditional AI

    Application           Example              Type

    Classification, Span detection, image recognition, Supervised

    Forecasting Sales prediction, stock movement, and Regression

    Clustering\tMarket segmentation\tUnsupervised

    Recommendation: Product/content suggestions, collaborative filtering

    Optimization, Route planning, inventory control, Reinforcement learning (early)

    Many of them are narrow, specialized models that call for domain-specific expertise.

    Generative AI and Large Language Models: The Revolution

    1. Purpose

    Generative AI, particularly LLMs such as GPT, Claude, Gemini, and LLaMA, shifts from analysis to creation. It creates new content with a human look and feel.

    They can:

    • Generate text, code, stories, summaries, answers, and explanations.
    • Translation across languages and modalities, such as text → image, image → text, etc.
    • Reason across diverse tasks without explicit reprogramming.

    They’re multi-purpose, context-aware, and creative.

    2. How It Works

    LLMs have been constructed using deep neural networks, especially the Transformer architecture introduced in 2017 by Google.

    Unlike traditional ML:

    • They train on massive unstructured data: books, articles, code, and websites.
    • They learn the patterns of language and thought, not explicit labels.
    • They predict the next token in a sequence, be it a word or a subword, and through this, they learn grammar, logic, facts, and how to reason implicitly.

    These are pre-trained on enormous corpora and then fine-tuned for specific tasks like chatting, coding, summarizing, etc.

    3. Example

    Let’s compare directly:

    Task, Traditional ML, Generative AI LLM

    Spam Detection Classifies a message as spam/not spam. Can write a realistic spam email or explain why it’s spam.

    Sentiment Analysis outputs “positive” or “negative.” Write a movie review, adjust the tone, or rewrite it neutrally.

    Translation rule-based/ statistical models, understand contextual meaning and idioms like a human.

    Chatbots: Pre-programmed, single responses, Conversational, contextually aware responses

    Data Science Predicts outcomes, generates insights, explains data, and even writes code.

    Key Differences — Side by Side

    Aspect      Traditional AI/ML      Generative AI/LLMs

    Objective – Predict or Classify from data; Create something entirely new

    Data Structured (tables, numeric), Unstructured (text, images, audio, code)

    Training Approach ×Task-specific ×General pretraining, fine-tuning later

    Architecture: Linear models, decision trees, CNNs, RNNs, Transformers, attention mechanisms

    Interpretability Easier to explain Harder to interpret (“black box”)

    Adaptability needs to be retrained for new tasks reachable via few-shot prompting

    Output Type: Fixed labels or numbers, Free-form text, code, media

    Human Interaction LinearGradientInput → OutputConversational, Iterative, Contextual

    Compute Scale\tRelatively small\tExtremely large (billions of parameters)

    Why Generative AI Feels “Intelligent”

    Generative models learn latent representations, meaning abstract relationships between concepts, not just statistical correlations.

    That’s why an LLM can:

    • Write a poem in Shakespearean style.
    • Debug your Python code.
    • Explain a legal clause.
    • Create an email based on mood and tone.

    Traditional AI could never do all that in one model; it would have to be dozens of specialized systems.

    Large language models are foundation models: enormous generalists that can be fine-tuned for many different applications.

    The Trade-offs

    Advantages      of Generative AI Bring        , But Be Careful About

    Creativity ↓ can produce human-like contextual output, can hallucinate, or generate false facts

    Efficiency: Handles many tasks with one model. Extremely resource-hungry compute, energy

    Accessibility: Anyone can prompt it – no coding required. Hard to control or explain inner reasoning

    Generalization Works across domains. May reflect biases or ethical issues in training data

    Traditional AI models are narrow but stable; LLMs are powerful but unpredictable.

    A Human Analogy

    Think of traditional AI as akin to a specialist, a person who can do one job extremely well if properly trained, whether that be an accountant or a radiologist.

    Think of Generative AI/LLMs as a curious polymath, someone who has read everything, can discuss anything, yet often makes confident mistakes.

    Both are valuable; it depends on the problem.

    Earth Impact

    • Traditional AI powers what is under the hood: credit scoring, demand forecasting, route optimization, and disease detection.
    • Generative AI powers human interfaces, including chatbots, writing assistants, code copilots, content creation, education tools, and creative design.

    Together, they are transformational.

    For example, in healthcare, traditional AI might analyze X-rays, while generative AI can explain the results to a doctor or patient in plain language.

     The Future — Convergence

    The future is hybrid AI:

    • Employ traditional models for accurate, data-driven predictions.
    • Use LLMs for reasoning, summarizing, and interacting with humans.
    • Connect both with APIs, agents, and workflow automation.

    This is where industries are going: “AI systems of systems” that put together prediction and generation, analytics and conversation, data science and storytelling.

    In a Nutshell,

    Dimension\tTraditional AI / ML\tGenerative AI / LLMs

    Core Idea: Learn patterns to predict outcomes. Learn representations to generate new content. Task Focus Narrow, single-purpose Broad, multi-purpose Input Labeled, structured data High-volume, unstructured data Example Predict loan default Write a financial summary Strengths\tAccuracy, control\tCreativity, adaptability Limitation Limited scope Risk of hallucination, bias.

    Human Takeaway

    Traditional AI taught machines how to think statistically. Generative AI is teaching them how to communicate, create, and reason like humans. Both are part of the same evolutionary journey-from automation to augmentation-where AI doesn’t just do work but helps us imagine new possibilities.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 157
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 09/11/2025In: Technology

How do you handle bias, fairness, and ethics in AI model development?

you handle bias, fairness, and ethics ...

aidevelopmentaiethicsbiasmitigationethicalaifairnessinairesponsibleai
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 09/11/2025 at 3:34 pm

    Earth Why This Matters AI systems no longer sit in labs but influence hiring decisions, healthcare diagnostics, credit approvals, policing, and access to education. That means if a model reflects bias, then it can harm real people. Handling bias, fairness, and ethics isn't a "nice-to-have"; it formsRead more

    Earth Why This Matters

    AI systems no longer sit in labs but influence hiring decisions, healthcare diagnostics, credit approvals, policing, and access to education. That means if a model reflects bias, then it can harm real people. Handling bias, fairness, and ethics isn’t a “nice-to-have”; it forms part of core engineering responsibilities.

    It often goes unnoticed but creeps in quietly: through biased data, incomplete context, or unquestioned assumptions. Fairness refers to your model treating individuals and groups equitably, while ethics mean your intention and implementation align with society and morality.

     Step 1: Recognize where bias comes from.

    Biases are not only in the algorithm, but often start well before model training:

    • Data Collection Bias: When some datasets underrepresent particular groups, such as fewer images of darker skin color in face datasets or fewer female names in résumé datasets.
    • Labeling bias: Human annotators bring their own unconscious assumptions in labeling data.
    • Measurement Bias: The features used may not be fair representatives of the true-world construct. For example, using “credit score” as a proxy for “trustworthiness”.
    • Historical Bias: A system reflects an already biased society, such as arrest data mirroring discriminatory policing.
    • Algorithmic Bias: Some algorithms amplify the majority patterns, especially when trained to optimize for accuracy alone.

    Early recognition of these biases is half the battle.

     Step 2: Design Considering Fairness

    You can encode fairness goals in your model pipeline right at the source:

    • Data Auditing & Balancing: Check your data for demographic balance by means of statistical summaries, heatmaps, and distribution analysis. Rebalance by either re-sampling or generating synthetic data.
    • Fair Feature Engineering: Refrain from using variables serving as proxies for sensitive attributes, such as gender, race, or income bracket.
    • Fairness-aware algorithms: Employ methods such as
    • Adversarial Debiasing: A secondary model tries to predict sensitive attributes; the main model learns to prevent this.
    • Equalized odds / Demographic parity: Improve metrics so that error rates across groups become as close as possible.
    • Reweighing: Modification of sample weights to balance an imbalance.
    • Explainable AI – XAI: Provide explanations of which features drive the predictions using techniques such as SHAP or LIME to detect potential discrimination.

    Example:

    If health AI predicts disease risk higher for a certain community because of missing socioeconomic context, then use interpretable methods to trace back the reason — and retrain with richer contextual data.

    Step 3: Evaluate and Monitor Fairness

    You can’t fix what you don’t measure. Fairness requires metrics and continuous monitoring:

    • Statistical Parity Difference: Are the outcomes equally distributed between the groups?
    • Equal Opportunity Difference: do all groups have similar true positive rates?
    • Disparate Impact Ratio: Are some groups being disproportionately affected by false positives or negatives?

    Also, monitor model drift-bias can re-emerge over time as data changes. Fairness dashboards or bias reports, even visual ones integrated into your monitoring system, help teams stay accountable.

    Step 4: Incorporate Diverse Views

    Ethical AI is not built in isolation. Bring together cross-functional teams: engineers, social scientists, domain experts, and even end-users.

    Participatory design involves affected communities in defining fairness.

    • Stakeholder feedback: Ask, “Who could be harmed if this model is wrong?” early in development.
    • Ethics Review Boards or AI Governance Committees: Most organizations now institutionalize review checkpoints before deployment.

    This reduces “blind spots” that homogeneous technical teams might miss.

     Step 5: Governance, Transparency, and Accountability

    Even the best models can fail on ethical dimensions if the process lacks either transparency or governance.

    • Model Cards (by Google) : Document how, when, and for whom a model should be used.
    • Data Sheets for Datasets by MIT/Google: Describe how data was collected and labeled; describe limitations

    Ethical Guidelines & Compliance Align with frameworks such as:

    • EU AI Act (2025)
    • NIST AI Risk Management Framework
    • India’s NITI Aayog Responsible AI guidelines

    Audit Trails: Retain version control, dataset provenance, and explainability reports for accountability.

     Step 6: Develop an ethical mindset

    Ethics isn’t only a checklist, but a mindset:

    • Ask “Should we?” before “Can we?”
    • Don’t only optimize for accuracy; optimize for impact.

    Understand that even a model technically perfect can cause harm if deployed in an insensitive manner.

    • A truly ethical AI would
    • Respects privacy
    • Values diversity
    • Precludes injury

    Provides support rather than blind replacement for human oversight.

    Example: Real-World Story

    When an AI recruitment tool was discovered downgrading resumes containing the word “women’s” – as in “women’s chess club” – at a global tech company, the company scrapped the project. The lesson wasn’t just technical; it was cultural: AI reflects our worldviews.

    That’s why companies now create “Responsible AI” teams that take the lead in ethics design, fairness testing, and human-in-the-loop validation before deployment.

    Summary

    • Dimension What It Means Example Mitigation.
    • Bias Unfair skew in data or predictions Data balancing, adversarial debiasing.
    • Fairness Equal treatment across demographic groups Equalized odds, demographic parity.

    Ethics Responsible design and use aligned with human values Governance, documentation, human oversight Grounding through plants Fair AI is not about making machines “perfect.” It’s about making humans more considerate in how they design them and deploy them. When we handle bias, fairness, and ethics consciously, we build trustworthy AI: one that works well but also does good.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 124
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 07/11/2025In: Technology

What is an AI agent? How does agentic AI differ from traditional ML models?

agentic AI differ from traditional ML ...

agentic-aiagentsaiartificial intelligenceautonomous-systemsmachine learning
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 07/11/2025 at 3:03 pm

    An AI agent is But that is not all: An agent is something more than a predictive or classification model; rather, it is an autonomous system that may take an action directed towards some goal. Put differently, An AI agent processes information, but it doesn't stop there. It's in the comprehension, tRead more

    An AI agent is

    But that is not all: An agent is something more than a predictive or classification model; rather, it is an autonomous system that may take an action directed towards some goal.

    Put differently,

    An AI agent processes information, but it doesn’t stop there. It’s in the comprehension, the memory, and the goals that will determine what comes next.

    Let’s consider three key capabilities of an AI agent:

    • Perception: It collects information from sensors, APIs, documents, user prompts, amongst others.
    • Reasoning: It knows context, and it plans or decides what to do next.
    • What it does: Performs an action list; this can invoke another API, write to a file, send an email, or initiate a workflow.

    A classical ML model could predict whether a transaction is fraudulent.

    But an AI agent could:

    • Detect suspicious transactions,
    • Look up the customer’s account history.
    • Send a confirmation email,

    Suspend the account if no response comes and do all that without a human telling it step by step.

    Under the Hood: What Makes an AI Agent “Agentic”?

    Genuinely agentic AI systems, by contrast, extend large language models like GPT-5 or Claude with more layers of processing and give them a much greater degree of autonomy and goal-directedness:

    Goal Orientation:

    • Instead of answering to one prompt, their focus is on an outcome: “book a ticket,” “generate a report”, or “solve a support ticket.”

    Planning and Reasoning:

    • They split a big problem up into smaller steps, for example, “first fetch data, then clean it, then summarize it”.

    Tool Use / API Integration:

    • They can call other functions and APIs. For instance, they could query a database, send an email, or interface to some other system.

    Memory:

    • They remember previous interactions or actions such that multi-turn reasoning and continuity can be achieved.

    Feedback Loops:

    • They can evaluate if they succeeded with their action, or failed, and thus adjust the next action just as human beings do.

    These components make the AI agents feel much less like “smart calculators” and more like “junior digital coworkers”.

    A Practical Example

    Now, let us consider a simple use case comparison wherein health-scheme claim analysis is close to your domain:

    In essence, any regular ML model would take the claims data as input and predict:

    → “The chance of this claim being fraudulent is 82%.”

    An AI agent could:

    • Check the claim.
    • Pull histories of hospitals and beneficiaries from APIs.
    • Check for consistency in the document.
    • Flag the anomalies and give a summary report to an officer.
    • If no response, follow up in 48 hours.

    That is the key shift: the model informs, while the agent initiates.

    Why the Shift to Agentic AI Matters

    Autonomy → Efficiency:

    • Agents can handle a repetitive workflow without constant human supervision.

    Scalability → Real-World Value:

    • You can deploy thousands of agents for customer support, logistics, data validation, or research tasks.

    Context Retention → Better Reasoning:

    • Since they retain memory and context, they can perform multitask processes with ease, much like any human analyst.

    Interoperability → System Integration:

    • They can interact with enterprise systems such as databases, CRMs, dashboards, or APIs to close the gap between AI predictions and business actions.

     Limitations & Ethical Considerations

    While agentic AI is powerful, it has also opened several new challenges:

    • Hallucination risk: agents may act on false assumptions.
    • Accountability: Who is responsible in case an AI agent made the wrong decision?
    • Security: API access granted to agents could be misused and cause damage.
    • Over-autonomy: Many applications, such as those in healthcare or finance.

    do need human-in-the-loop. Hence, the current trend is hybrid autonomy: AI agents that act independently but always escalate key decisions to humans.

    Body Language by Jane Smith

    “An AI agent is an intelligent system that analyzes data while independently taking autonomous actions toward a goal. Unlike traditional ML models that stop at prediction, agentic AI is able to reason, plan, use tools, and remember context effectively bridging the gap between intelligence and action. While the traditional models are static and task-specific, the agentic systems are dynamic and adaptive, capable of handling end-to-end workflows with minimal supervision.”

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 148
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 07/11/2025In: Technology

How do you decide when to use a model like a CNN vs an RNN vs a transformer?

CNN vs an RNN vs a transformer

cnndeep learningmachine learningneural-networksrnntransformers
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 07/11/2025 at 1:00 pm

    Understanding the Core Differences That is, by choosing between CNNs, RNNs, and Transformers, you are choosing how a model sees patterns in data: whether they are spatial, temporal, or contextual relationships across long sequences. Let's break that down: 1. Convolutional Neural Networks (CNNs) – BeRead more

    Understanding the Core Differences

    That is, by choosing between CNNs, RNNs, and Transformers, you are choosing how a model sees patterns in data: whether they are spatial, temporal, or contextual relationships across long sequences.

    Let’s break that down:

    1. Convolutional Neural Networks (CNNs) – Best for spatial or grid-like data

    When to use:

    • Use a CNN when your data has a clear spatial structure, meaning that patterns depend on local neighborhoods.
    • Think images, videos, medical scans, satellite imagery, or even feature maps extracted from sensors.

    Why it works:

    • Convolutions used by CNNs are sliding filters that detect local features: edges, corners, colors.
    • As data passes through layers, the model builds up hierarchical feature representations from edges → textures → objects → scenes.

    Example use cases:

    • Image classification (e.g., diagnosing pneumonia from chest X-rays)

    • Object detection (e.g., identifying road signs in self-driving cars)

    • Facial recognition, medical segmentation, or anomaly detection in dashboards

    • Even some analysis of audio spectrograms-a way of viewing sound as a 2D map of frequencies in

    In short: It’s when “where something appears” is more crucial than “when it does.”

    2. Recurrent Neural Networks (RNNs) – Best for sequential or time-series data

    When to use:

    • Use RNNs when order and temporal dependencies are important; current input depends on what has come before.

    Why it works:

    • RNNs have a persistent hidden state that gets updated at every step, which lets them “remember” previous inputs.
    • Variants include LSTM and GRU, which allow for longer dependencies to be captured and avoid vanishing gradients.

    Example use cases:

    • Natural language tasks like Sentiment Analysis, machine translation before transformers took over
    • Time-series forecasting: stock prices, patient vitals, weather data, etc.
    • Sequential data modeling: for example, monitoring hospital patients, ECG readings, anomaly detection in IoT streams.
    • Speech recognition or predictive text

    In other words: RNNs are great when “sequence and timing” is most important – you’re modeling how it unfolds.

    3. Transformers – Best for context-heavy data with long-range dependencies

    When to use:

    • Transformers are currently the state of the art for nearly every task that requires modeling complicated relationships on long sequences-text, images, audio, even structured data.

    Why it works:

    • Unlike RNNs, which process data one step at a time, transformers make use of self-attention — a mechanism that allows the model to look at all parts of the input at once and decide which parts are most relevant to each other.

    This gives transformers three big advantages:

    • Parallelization: Training is way faster because inputs are processed simultaneously.
    • Long-range understanding: They are global in capturing dependencies, for example, word 1 affecting word 100.
    • Adaptability: Works across multiple modalities, such as text, images, code, etc.

    Example use cases:

    • NLP: ChatGPT, BERT, T5, etc.
    • Vision: The ViT now competes with the CNN for image recognition.
    • Audio/Video: Speech-to-text, music generation, multimodal tasks.
    • Health & business: Predictive analytics using structured plus unstructured data such as clinical notes and sensor data.

    In other words, Transformers are ideal when global context and scalability are critical — when you need the model to understand relationships anywhere in the sequence.

     Example Analogy (for Human Touch)

    Imagine you are analyzing a film:

    • A CNN focuses on every frame; the visuals, the color patterns, who’s where on screen.
    • An RNN focuses on how scenes flow over time the storyline, one moment leading to another.
    • A Transformer reads the whole script at once: character relationships, themes, and how the ending relates to the beginning.

    So, it depends on whether you are analyzing visuals, sequence, or context.

    Summary Answer for an Interview

    I will choose a CNN if my data is spatially correlated, such as images or medical scans, since it does a better job of modeling local features. But if there is some strong temporal dependence in my data, such as time-series or language, I will select an RNN or an LSTM, which does the processing sequentially. If the task, however, calls for an understanding of long-range dependencies or relationships, especially for large and complex datasets, then I would use a Transformer. Recently, Transformers have generalized across vision, text, and audio and therefore have become the default solution for most recent deep learning applications.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 150
  • 0
Answer
Load More Questions

Sidebar

Ask A Question

Stats

  • Questions 548
  • Answers 1k
  • Posts 25
  • Best Answers 21
  • Popular
  • Answers
  • mohdanas

    Are AI video generat

    • 940 Answers
  • daniyasiddiqui

    How is prompt engine

    • 120 Answers
  • daniyasiddiqui

    “What lifestyle habi

    • 21 Answers
  • avtonovosti_oxsn
    avtonovosti_oxsn added an answer журнал про авто [url=https://avtonovosti-2.ru/]журнал про авто[/url] . 03/02/2026 at 5:53 am
  • avtonovosti_kzMa
    avtonovosti_kzMa added an answer журналы автомобильные [url=https://avtonovosti-1.ru/]avtonovosti-1.ru[/url] . 03/02/2026 at 4:36 am
  • top_onlajn_cmKr
    top_onlajn_cmKr added an answer t.me/s/top_onlajn_kazino_rossii [url=https://t.me/s/top_onlajn_kazino_rossii/]t.me/s/top_onlajn_kazino_rossii[/url] . 03/02/2026 at 3:23 am

Top Members

Trending Tags

ai aiineducation ai in education analytics artificialintelligence artificial intelligence company deep learning digital health edtech education health investing machine learning machinelearning news people tariffs technology trade policy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved