Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/computer vision
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
daniyasiddiquiEditor’s Choice
Asked: 25/11/2025In: Technology

Will multimodal LLMs replace traditional computer vision pipelines (CNNs, YOLO, segmentation models)?

multimodal LLMs replace traditional c ...

ai trendscomputer visiondeep learningmodel comparisonmultimodal llmsyolo / cnn / segmentation
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 25/11/2025 at 2:15 pm

    1. The Core Shift: From Narrow Vision Models to General-Purpose Perception Models For most of the past decade, computer vision relied on highly specialized architectures: CNNs for classification YOLO/SSD/DETR for object detection U-Net/Mask R-CNN for segmentation RAFT/FlowNet for optical flow Swin/VRead more

    1. The Core Shift: From Narrow Vision Models to General-Purpose Perception Models

    For most of the past decade, computer vision relied on highly specialized architectures:

    • CNNs for classification

    • YOLO/SSD/DETR for object detection

    • U-Net/Mask R-CNN for segmentation

    • RAFT/FlowNet for optical flow

    • Swin/ViT variants for advanced features

    These systems solved one thing extremely well.

    But modern multimodal LLMs like GPT-5, Gemini Ultra, Claude 3.7, Llama 4-Vision, Qwen-VL, and research models such as V-Jepa or MM1 are trained on massive corpora of images, videos, text, and sometimes audio—giving them a much broader understanding of the world.

    This changes the game.

    Not because they “see” better than vision models, but because they “understand” more.

    2. Why Multimodal LLMs Are Gaining Ground

    A. They excel at reasoning, not just perceiving

    Traditional CV models tell you:

    • What object is present

    • Where it is located

    • What mask or box surrounds it

    But multimodal LLMs can tell you:

    • What the object means in context

    • How it might behave

    • What action you should take

    • Why something is occurring

    For example:

    A CNN can tell you:

    • “Person holding a bottle.”

    A multimodal LLM can add:

    • “The person is holding a medical vial, likely preparing for an injection.”

    This jump from perception to interpretation is where multimodal LLMs dominate.

    B. They unify multiple tasks that previously required separate models

    Instead of:

    • One model for detection

    • One for segmentation

    • One for OCR

    • One for visual QA

    • One for captioning

    • One for policy generation

    A modern multimodal LLM can perform all of them in a single forward pass.

    This drastically simplifies pipelines.


    C. They are easier to integrate into real applications

    Developers prefer:

    • natural language prompts

    • API-based workflows

    • agent-style reasoning

    • tool calls

    • chain-of-thought explanations

    Vision specialists will still train CNNs, but a product team shipping an app prefers something that “just works.”

    3. But Here’s the Catch: Traditional Computer Vision Isn’t Going Away

    There are several areas where classic CV still outperforms:

    A. Speed and latency

    YOLO can run at 100 300 FPS on 1080p video.

    Multimodal LLMs cannot match that for real-time tasks like:

    • autonomous driving

    • CCTV analytics

    • high-frequency manufacturing

    • robotics motion control

    • mobile deployment on low-power devices

    Traditional models are small, optimized, and hardware-friendly.

    B. Deterministic behavior

    Enterprise-grade use cases still require:

    • strict reproducibility

    • guaranteed accuracy thresholds

    • deterministic outputs

    Multimodal LLMs, although improving, still have some stochastic variation.

    C. Resource constraints

    LLMs require:

    • more VRAM

    • more compute

    • slower inference

    • advanced hardware (GPUs, TPUs, NPUs)

    Whereas CNNs run well on:

    • edge devices

    • microcontrollers

    • drones

    • embedded hardware

    • phones with NPUs

    D. Tasks requiring pixel-level precision

    For fine-grained tasks like:

    • medical image segmentation

    • surgical navigation

    • industrial defect detection

    • satellite imagery analysis

    • biomedical microscopy

    • radiology

    U-Net and specialized segmentation models still dominate in accuracy.

    LLMs are improving, but not at that deterministic pixel-wise granularity.

    4. The Future: A Hybrid Vision Stack

    What we’re likely to see is neither replacement nor coexistence, but fusion:

    A. Specialized vision model → LLM reasoning layer

    This is already common:

    • DETR/YOLO extracts objects

    • A vision encoder sends embeddings to the LLM

    • The LLM performs interpretation, planning, or decision-making

    This solves both latency and reasoning challenges.

    B. LLMs orchestrating traditional CV tools

    An AI agent might:

    1. Call YOLO for detection

    2. Call U-Net for segmentation

    3. Use OCR for text extraction

    4. Then integrate everything to produce a final reasoning outcome

    This orchestration is where multimodality shines.

    C. Vision engines inside LLMs become good enough for 80% of use cases

    For many consumer and enterprise applications, “good enough + reasoning” beats “pixel-perfect but narrow.”

    Examples where LLMs will dominate:

    • retail visual search

    • AR/VR understanding

    • document analysis

    • e-commerce product tagging

    • insurance claims

    • content moderation

    • image explanation for blind users

    • multimodal chatbots

    In these cases, the value is understanding, not precision.

    5. So Will Multimodal LLMs Replace Traditional CV?

    Yes for understanding-driven tasks.

    • Where interpretation, reasoning, dialogue, and context matter, multimodal LLMs will replace many legacy CV pipelines.

    No for real-time and precision-critical tasks.

    • Where speed, determinism, and pixel-level accuracy matter, traditional CV will remain essential.

    Most realistically they will combine.

    A hybrid model stack where:

    • CNNs do the seeing

    • LLMs do the thinking

    This is the direction nearly every major AI lab is taking.

    6. The Bottom Line

    • Traditional computer vision is not disappearing it’s being absorbed.

    The future is not “LLM vs CV” but:

    • Vision models + LLMs + multimodal reasoning ≈ the next generation of perception AI.
    • The change is less about replacing models and more about transforming workflows.
    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 44
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 10/10/2025In: Technology

Are multimodal AI models redefining how humans and machines communicate?

humans and machines

ai communicationartificial intelligencecomputer visionmultimodal ainatural language processing
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 10/10/2025 at 3:43 pm

    From Text to a World of Senses Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-baseRead more

    From Text to a World of Senses

    Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-based ones like Claude can ingest text, pictures, sound, and even video all simultaneously in the same manner. That is the implication that instead of describing something you see to someone, you just show them. You can upload a photo, ask things of it, and get useful answers in real-time — from object detection to pattern recognition to even pretty-pleasing visual criticism.

    This shift mirrors how we naturally communicate: we gesture with our hands wildly, rely on tone, face, and context — not necessarily words. In that way, AI is learning our language step-by-step, not vice versa.

    A New Age of Interaction

    Picture requesting your AI companion not only to “plan a trip,” but to examine a picture of your go-to vacation spot, hear your tone to gauge your level of excitement, and subsequently create a trip suitable for your mood and beauty settings. Or consider students employing multimodal AI instructors who can read their scribbled notes, observe them working through math problems, and provide customized corrections — much like a human teacher would.

    Businesses are already using this technology in customer support, healthcare, and design. A physician, for instance, can upload scan images and sketch patient symptoms; the AI reads images and text alike to assist with diagnosis. Designers can enter sketches, mood boards, and voice cues in design to get true creative results.

    Closing the gap between Accessibility and Comprehension

    Multimodal AI is also breaking down barriers for the disabled. Blind people can now rely on AI as their eyes and tell them what is happening in real time. Speech or writing disabled people can send messages with gestures or images instead. The result is a barrier-free digital society where information is not limited to one form of input.

    Challenges Along the Way

    But it’s not a silky ride the entire distance. Multimodal systems are complex — they have to combine and understand multiple signals in the correct manner, without mixing up intent or cultural background. Emotion detection or reading facial expressions, for instance, is potentially ethically and privacy-stealthily dubious. And there is also fear of misinformation — especially as AI gets better at creating realistic imagery, sound, and video.

    Functionalizing these humongous systems also requires mountains of computation and data, which have greater environmental and security implications.

    The Human Touch Still Matters

    Even in the presence of multimodal AI, it doesn’t replace human perception — it augments it. They can recognize patterns and reflect empathy, but genuine human connection is still rooted in experience, emotion, and ethics. The goal isn’t to come up with machines that replace communication, but to come up with machines that help us communicate, learn, and connect more effectively.

    In Conclusion

    Multimodal AI is redefining human-computer interaction to make it more human-like, visual, and emotionally smart. It’s not about what we tell AI anymore — it’s about what we demonstrate, experience, and mean. This brings us closer to the dream of the future in which technology might hear us like a fellow human being — bridging the gap between human imagination and machine intelligence.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 90
  • 0
Answer

Sidebar

Ask A Question

Stats

  • Questions 501
  • Answers 493
  • Posts 4
  • Best Answers 21
  • Popular
  • Answers
  • daniyasiddiqui

    “What lifestyle habi

    • 6 Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • mohdanas

    Are AI video generat

    • 4 Answers
  • James
    James added an answer Play-to-earn crypto games. No registration hassles, no KYC verification, transparent blockchain gaming. Start playing https://tinyurl.com/anon-gaming 04/12/2025 at 2:05 am
  • daniyasiddiqui
    daniyasiddiqui added an answer 1. The first obvious ROI dimension to consider is direct cost savings gained from training and computing. With PEFT, you… 01/12/2025 at 4:09 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer 1. Elevated Model Complexity, Heightened Computational Power, and Latency Costs Cross-modal models do not just operate on additional datatypes; they… 01/12/2025 at 2:28 pm

Top Members

Trending Tags

ai aiethics aiineducation analytics artificialintelligence company digital health edtech education generativeai geopolitics health language news nutrition people tariffs technology trade policy tradepolicy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved