AI models becoming multimodal
Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.
Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
1. What Does "Multimodal" Actually Mean? "Multimodal AI" is just a fancy way of saying that the model is designed to handle lots of different kinds of input and output. You could, for instance: Upload a photo of a broken engine and say, "What's going on here?" Send an audio message and have it tranRead more
1. What Does “Multimodal” Actually Mean?
“Multimodal AI” is just a fancy way of saying that the model is designed to handle lots of different kinds of input and output.
You could, for instance:
It’s almost like AI developed new “senses,” so it could visually perceive, hear, and speak instead of reading.
2. How Did We Get Here?
The path to multimodality started when scientists understood that human intelligence is not textual — humans experience the world in image, sound, and feeling. Then, engineers began to train artificial intelligence on hybrid datasets — images with text, video with subtitles, audio clips with captions.
Neural networks have developed over time to:
These advances resulted in models that translate the world as a whole in, non-linguistic fashion.
3. The Magic Under the Hood — How Multimodal Models Work
It’s centered around something known as a shared embedding space.
Conceptualize it as an enormous mental canvas surface upon which words and pictures, and sounds all co-reside in the same space of meaning.
This is basically how it works in a grossly oversimplified nutshell:
So when you tell it, “Describe what’s going on in this video,” the model puts together:
That’s what AI does: deep, context-sensitive understanding across modes.
4. Multimodal AI Applications in the Real World in 2025
Now, multimodal AI is all around us — transforming life in quiet ways.
a. Learning
Students watch video lectures, and AI automatically summarizes lectures, highlights key points, and even creates quizzes. Teachers utilize it to build interactive multimedia learning environments.
b. Medicine
Physicians can input medical scans, lab work, and patient history into a single system. The AI cross-matches all of it to help make diagnoses — catching what human doctors may miss.
c. Work and Productivity
You have a meeting and AI provides a transcript, highlights key decisions, and suggests follow-up emails — all from sound, text, and context.
d. Creativity and Design
Multimodal AI is employed by marketers and artists to generate campaign imagery from text inputs, animate them, and even write music — all based on one idea.
e. Accessibility
For visually and hearing impaired individuals, multimodal AI will read images out or translate speech into text in real-time — bridging communication gaps.
5. Top Multimodal Models of 2025
Model Modalities Supported Unique Strengths:
GPT-5 (OpenAI)Text, image, soundDeep reasoning with image & sound processing. Gemini 2 (Google DeepMind)Text, image, video, code. Real-time video insight, together with YouTube & WorkspaceClaude 3.5 (Anthropic)Text, imageEmpathetic contextual and ethical multimodal reasoningMistral Large + Vision Add-ons. Text, image. ixa. Open-source multimodal business capability LLaMA 3 + SeamlessM4TText, image, speechSpeech translation and understanding in multiple languages
These models aren’t observing things happen — they’re making things happen. An input such as “Design a future city and tell its history” would now produce both the image and the words, simultaneously in harmony.
6. Why Multimodality Feels So Human
When you communicate with a multimodal AI, it’s no longer writing in a box. You can tell, show, and hear. The dialogue is richer, more realistic — like describing something to your friend who understands you.
That’s what’s changing the AI experience from being interacted with to being collaborated with.
You’re not providing instructions — you’re co-creating.
7. The Challenges: Why It’s Still Hard
Despite the progress, multimodal AI has its downsides:
Researchers are working day and night to develop transparent reasoning and edge processing (executing AI on devices themselves) to circumvent8. The Future: AI That “Perceives” Like Us
AI will be well on its way to real-time multimodal interaction by the end of 2025 — picture your assistant scanning your space with smart glasses, hearing your tone of voice, and reacting to what it senses.
Multimodal AI will more and more:
In effect, AI is no longer so much a text reader but rather a perceiver of the world.
Final Thought
The more senses that AI can learn from, the more human it will become — not replacing us, but complementing what we can do, learn, create, and connect.
Over the next few years, “show, don’t tell” will not only be a rule of storytelling, but how we’re going to talk to AI itself.
See less