Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/artificial intelligence
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
daniyasiddiquiImage-Explained
Asked: 13/10/2025In: Technology

What is AI?

AI

aiartificial intelligenceautomationfuture-of-techmachine learningtechnology
  1. daniyasiddiqui
    daniyasiddiqui Image-Explained
    Added an answer on 13/10/2025 at 12:55 pm

    1. The Simple Idea: Machines Taught to "Think" Artificial Intelligence is the design of making computers perform intelligent things — not just by following instructions, but actually learning from information and improving with time. In regular programming, humans teach computers to accomplish thingRead more

    1. The Simple Idea: Machines Taught to “Think”

    Artificial Intelligence is the design of making computers perform intelligent things — not just by following instructions, but actually learning from information and improving with time.

    In regular programming, humans teach computers to accomplish things step by step.

    In AI, computers learn to resolve things on their own by gaining expertise on patterns in information.

    For example

    When Siri quotes back the weather to you, it is not reading from a script. It is recognizing your voice, interpreting your question, accessing the right information, and responding in its own words — all driven by AI.

    2. How AI “Learns” — The Power of Data and Algorithms

    Computers are instructed with so-called machine learning —inferring catalogs of vast amounts of data so that they may learn patterns.

    • Machine Learning (ML): The machine learns by example, not by rule. Display a thousand images of dogs and cats, and it may learn to tell them apart without learning to do so.
    • Deep Learning: Latest generation of ML based on neural networks —stacks of algorithms imitating the way we think.

    That’s how machines can now identify faces, translate text, or compose music.

    3. Examples of AI in Your Daily Life

    You probably interact with AI dozens of times a day — maybe without even realizing it.

    • Your phone: Face ID, voice assistants, and autocorrect.
    • Streaming: Netflix or Spotify recommends you like something.
    • Shopping: Amazon’s “Recommended for you” page.
    • Health care: AI is diagnosing diseases from X-rays faster than doctors.
    • Cars: Self-driving vehicles with sensors and AI delivering split-second decisions.

    AI isn’t science fiction anymore — it’s present in our reality.

     4. AI types

    AI isn’t one entity — there are levels:

    • Narrow AI (Weak AI): Designed to perform a single task, like ChatGPT responding or Google Maps route navigation.
    • General AI (Strong AI): A Hypothetical kind that would perhaps understand and reason in several fields as any common human individual, yet to be achieved.
    • Superintelligent AI: Another level higher than human intelligence — still a future goal, but widely seen in the movies.

    We already have Narrow AI, mostly, but it is already incredibly powerful.

     5. The Human Side — Pros and Cons

    AI is full of promise and also challenges our minds to do the hard thinking.

    Advantages:

    • Smart healthcare diagnosis
    • Personalized learning
    • Weather prediction and disaster simulations
    • Faster science and technology innovation

    Disadvantages:

    • Bias: AI can be biased in decision-making if AI is trained using biased data.
    • Job loss: Automation will displace some jobs, especially repetitive ones.
    • Privacy: AI systems gather huge amounts of personal data.
    • Ethics: Who would be liable if an AI erred — the maker, the user, or the machine?

    The emergence of AI presses us to redefine what it means to be human in an intelligent machine-shared world.

    6. The Future of AI — Collaboration, Not Competition

    The future of AI is not one of machines becoming human, but humans and AI cooperating. Consider physicians making diagnoses earlier with AI technology, educators adapting lessons to each student, or cities becoming intelligent and green with AI planning.

    AI will progress, yet it will never cease needing human imagination, empathy, and morals to steer it.

     Last Thought

    Artificial Intelligence is not a technology — it’s a demonstration of humans of the necessity to understand intelligence itself. It’s a matter of projecting our minds beyond biology. The more we advance in AI, the more the question shifts from “What can AI do?” to “How do we use it well to empower all?”

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 28
  • 0
Answer
daniyasiddiquiImage-Explained
Asked: 10/10/2025In: Technology

Are multimodal AI models redefining how humans and machines communicate?

humans and machines

ai communicationartificial intelligencecomputer visionmultimodal ainatural language processing
  1. daniyasiddiqui
    daniyasiddiqui Image-Explained
    Added an answer on 10/10/2025 at 3:43 pm

    From Text to a World of Senses Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-baseRead more

    From Text to a World of Senses

    Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-based ones like Claude can ingest text, pictures, sound, and even video all simultaneously in the same manner. That is the implication that instead of describing something you see to someone, you just show them. You can upload a photo, ask things of it, and get useful answers in real-time — from object detection to pattern recognition to even pretty-pleasing visual criticism.

    This shift mirrors how we naturally communicate: we gesture with our hands wildly, rely on tone, face, and context — not necessarily words. In that way, AI is learning our language step-by-step, not vice versa.

    A New Age of Interaction

    Picture requesting your AI companion not only to “plan a trip,” but to examine a picture of your go-to vacation spot, hear your tone to gauge your level of excitement, and subsequently create a trip suitable for your mood and beauty settings. Or consider students employing multimodal AI instructors who can read their scribbled notes, observe them working through math problems, and provide customized corrections — much like a human teacher would.

    Businesses are already using this technology in customer support, healthcare, and design. A physician, for instance, can upload scan images and sketch patient symptoms; the AI reads images and text alike to assist with diagnosis. Designers can enter sketches, mood boards, and voice cues in design to get true creative results.

    Closing the gap between Accessibility and Comprehension

    Multimodal AI is also breaking down barriers for the disabled. Blind people can now rely on AI as their eyes and tell them what is happening in real time. Speech or writing disabled people can send messages with gestures or images instead. The result is a barrier-free digital society where information is not limited to one form of input.

    Challenges Along the Way

    But it’s not a silky ride the entire distance. Multimodal systems are complex — they have to combine and understand multiple signals in the correct manner, without mixing up intent or cultural background. Emotion detection or reading facial expressions, for instance, is potentially ethically and privacy-stealthily dubious. And there is also fear of misinformation — especially as AI gets better at creating realistic imagery, sound, and video.

    Functionalizing these humongous systems also requires mountains of computation and data, which have greater environmental and security implications.

    The Human Touch Still Matters

    Even in the presence of multimodal AI, it doesn’t replace human perception — it augments it. They can recognize patterns and reflect empathy, but genuine human connection is still rooted in experience, emotion, and ethics. The goal isn’t to come up with machines that replace communication, but to come up with machines that help us communicate, learn, and connect more effectively.

    In Conclusion

    Multimodal AI is redefining human-computer interaction to make it more human-like, visual, and emotionally smart. It’s not about what we tell AI anymore — it’s about what we demonstrate, experience, and mean. This brings us closer to the dream of the future in which technology might hear us like a fellow human being — bridging the gap between human imagination and machine intelligence.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 38
  • 0
Answer
mohdanasMost Helpful
Asked: 22/09/2025In: Technology

Can AI reliably switch between “fast” and “deliberate” thinking modes, like humans do?

“fast” and “deliberate” thinking mode ...

ai cognitionai decision makingartificial intelligencecognitive modelsfast vs deliberate thinkinghuman-like ai
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 22/09/2025 at 4:00 pm

     How Humans Think: Fast vs. Slow Psychologists like to talk about two systems of thought: Fast thinking (System 1): quick, impulsive, automatic. It's what you do when you dodge a ball, recognize a face, or repeat "2+2=4" on autopilot. Deliberate thinking (System 2): slow, effortful, analytical. It'sRead more

     How Humans Think: Fast vs. Slow

    Psychologists like to talk about two systems of thought:

    • Fast thinking (System 1): quick, impulsive, automatic. It’s what you do when you dodge a ball, recognize a face, or repeat “2+2=4” on autopilot.
    • Deliberate thinking (System 2): slow, effortful, analytical. It’s what you use when you create a budget, solve a tricky puzzle, or make a moral decision.

    Humans always switch between the two depending on the situation. We use shortcuts most of the time, but when things get complicated, we resort to conscious thinking.

     How AI Thinks Today

    Today’s AI systems actually don’t have “two brains” like we do. Instead, they work more like an incredibly powerful engine:

    • When you ask it a simple fact-based question, they come up with a quick, smooth answer.
    • When you ask them something more complex, they appear to slow down, giving them well-defined steps of logic—but in the background, it’s the same process, only done differently.

    Part of more advanced AI work is experimenting with other “modes” of reasoning:

    • Fast mode: a speedy, heuristics-based run-through, for simple questions or when being fast is more important than depth.
    • Deliberate mode: a slower, step-by-step thought process (even making its own internal “notes”) to approach more complex or high-stakes tasks.

    This is similar to what people do, but it’s not quite human yet—AI will need to have explicit design for mode-switching, while people switch unconsciously.

    Why This Matters for People

    Imagine a doctor using an AI assistant:

    • In fast mode, the AI would quickly pull up suitable patient charts, laboratory test results, or medical journals.
    • In deliberate mode, the AI would go slowly to analyze those charts, consider several lines of action, and give lengthy explanations of its decisions.

    Or a student:

    • Fast mode helps with quick homework solutions or synopses.
    • Deliberate mode leads them through steps of reasoning, similar to an imbedded tutor.

    If AI can alternate between these modes reliably, it becomes more helpful and trustworthy—not a fast mouth always, but also not a careful thinker when not needed.

    The Challenges

    • Reliability: Humans know when to pace (though never flawlessly). AI often does not “know what it doesn’t know,” so it might stay in fast mode when thoughtful consideration is needed.
    • Transparency: In deliberate mode, AI may be able to produce explanations that seem convincing but are still lacking (so-called “hallucinations”).
    • Efficiency trade-offs: Deliberate mode is more computationally intensive, so slower and more costly. The compromise will be a balancing act between speed and depth.
    • Trust: People will have a tendency to over-trust fast mode responses that sound assertive but aren’t well-reasoned.

     Looking Ahead

    Researchers are now building meta-reasoning—allowing AI not just to answer, but to decide how to answer. Someday we might have AIs that:

    • Start out in speed mode but automatically switch to careful mode when they feel they need to.
    • Offer users the choice: “Quick version or deep dive?”

    Know context—appreciating that medical treatment must involve slow, careful consideration, but only a quick answer is required for a restaurant recommendation.

    In Human Terms

    Now, AI is such a student who always hurries to provide an answer, occasionally brilliant, occasionally hasty. Then there is bringing AI to resemble an old pro—person who has the reflex to trust intuition and sense when to refrain, think deeply, and double-check before responding.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 1
  • 1
  • 52
  • 0
Answer
mohdanasMost Helpful
Asked: 22/09/2025In: Technology

What is “multimodal AI,” and how is it different from regular AI models?

it different from regular AI models

ai technology deep learningartificial intelligencedeep learningmachine learningmultimodal ai
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 22/09/2025 at 3:41 pm

    What is Multimodal AI? In its simplest definition, multimodal AI is a form of artificial intelligence that can comprehend and deal with more than one kind of input—at least text, images, audio, and even video—simultaneously. Consider how humans communicate: when you're talking with a friend, you donRead more

    What is Multimodal AI?

    In its simplest definition, multimodal AI is a form of artificial intelligence that can comprehend and deal with more than one kind of input—at least text, images, audio, and even video—simultaneously.

    Consider how humans communicate: when you’re talking with a friend, you don’t solely depend on language. You read facial expressions, tone of voice, and body language as well. That’s multimodal communication. Multimodal AI is attempting to do the same—soaking up and linking together different channels of information to better understand the world.

    How is it Different from Regular AI Models?

    kind of traditional or “single-modal” AI models are typically trained to process only one :

    • A text-based model such as vintage chatbots or search engines can process only written language.
    • An image recognition model can recognize cats in pictures but can’t explain them in words.
    • A speech-to-text model can convert audio into words, but it won’t also interpret the meaning of what was said in relation to an image or a video.
    • Multimodal AI turns this limitation on its head. Rather than being tied to a single ability, it learns across modalities. For instance:
    • You upload an image of your fridge, and the AI not only identifies the ingredients but also provides a text recipe suggestion.
    • You play a brief clip of a soccer game, and it can describe the action along with summarizing the play-by-play.

    You say a question aloud, and it not only hears you but also calls up similar images, diagrams, or text to respond.

     Why Does it Matter for Humans?

    • Multimodal AI seems like a giant step forward because it gets closer to the way we naturally think and learn.
    • A kid discovers that “dog” is not merely a word—they hear someone say it, see the creature, touch its fur, and integrate all those perceptions into one idea.
    • Likewise, multimodal AI can ingest text, pictures, and sounds, and create a richer, more multidimensional understanding.

    More natural, human-like conversations. Rather than jumping between a text app, an image app, and a voice assistant, you might have one AI that does it all in a smooth, seamless way.

     Opportunities and Challenges

    • Opportunities: Smarter personal assistants, more accessible technology (assisting people with disabilities through the marriage of speech, vision, and text), education breakthroughs (visual + verbal instruction), and creative tools (using sketches to create stories or songs).
    • Challenges: Building models for multiple types of data takes enormous computing resources and concerns privacy—because the AI is not only consuming your words, it might also be scanning your images, videos, or even voice tone. There’s also a possibility that AI will commit “multimodal mistakes”—such as misinterpreting sarcasm in talk or overreading an image.

     In Simple Terms

    If standard AI is a person who can just read books but not view images or hear music, then multimodal AI is a person who can read, watch, listen, and then integrate all that knowledge into a single greater, more human form of understanding.

    It’s not necessarily smarter—it’s more like how we sense the world.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 1
  • 1
  • 51
  • 0
Answer

Sidebar

Ask A Question

Stats

  • Questions 394
  • Answers 379
  • Posts 3
  • Best Answers 21
  • Popular
  • Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • Anonymous

    Which industries are

    • 3 Answers
  • daniyasiddiqui

    How can mindfulness

    • 2 Answers
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. What Every Method Really Does Prompt Engineering It's the science of providing a foundation model (such as GPT-4, Claude,… 19/10/2025 at 4:38 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. Approach Prompting as a Discussion Instead of a Direct Command Suppose you have a very intelligent but word-literal intern… 19/10/2025 at 3:25 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. Different Brains, Different Training Imagine you ask three doctors about a headache: One from India, One from Germany, One… 19/10/2025 at 2:31 pm

Top Members

Trending Tags

ai aiineducation ai in education analytics company digital health edtech education geopolitics global trade health language languagelearning mindfulness multimodalai news people tariffs technology trade policy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved