Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/artificial intelligence
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
daniyasiddiquiEditor’s Choice
Asked: 26/12/2025In: Technology

What are generative AI models, and how do they differ from predictive models?

generative AI models

artificial intelligencedeep learningfine-tuningmachine learningpre-trainingtransfer learning
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 26/12/2025 at 5:10 pm

    Understanding the Two Model Types in Simple Terms Both generative and predictive AI models learn from data at the core. However, they are built for very different purposes. Generative AI models are designed to create content that had not existed prior to its creation. Predictive models are designedRead more

    Understanding the Two Model Types in Simple Terms

    Both generative and predictive AI models learn from data at the core. However, they are built for very different purposes.

    • Generative AI models are designed to create content that had not existed prior to its creation.
    • Predictive models are designed to forecast or classify outcomes based on existing data.

    Another simpler way of looking at this is:

    • Generative models generate something new.
    • Predictive models make decisions or estimates by deciding to do something or estimating something.

    What are Generative AI models?

    Generative AI models learn from the underlying patterns, structure, and relationships in data to produce realistic new outputs that resemble the data they have learned from.

    Instead of answering “What is likely to happen?”, they answer:

    • “What could be made possible?
    • What would be a realistic answer?
    • “How can I complete or extend this input?

    These models synthesize completely new information rather than simply retrieve already existing pieces.

    Common Examples of Generative AI

    • Text Generations and Conversational AI
    • Image and Video creation
    • Music and audio synthesis
    • Code generation
    • Document summarization, rewriting

    When you ask an AI to write an email for you, design a rough idea of the logo, or draft code, you are basically working with a generative model.

    What is Predictive Modeling?

    Predictive models rely on the analysis of available data to forecast an outcome or classification. They are trained on recognizing patterns that will generate a particular outcome.

    They are targeted at accuracy, consistency, and reliability, rather than creativity.

    Predictive models generally answer such questions as:

    • “Will this customer churn?”
    • Q: “Is this transaction fraudulent?
    • “What will sales be next month?”
    • “Does this image contain a tumor?”

    They do not create new content, but assess and decide based on learned correlations.

    Key Differences Explained Succinctly

    1. Output Type

    Generative models create new text, images, audio, or code. Predictive models output a label, score, probability, or numeric value.

    2. Aim

    Generative models aim at modeling the distribution of data and generating realistic samples. Predictive models aim at optimizing decision accuracy for a well-defined target.

    3. Creativity vs Precision

    Generative AI embraces variability and diversity, while predictive models are all about precision, reproducibility, and quantifiable performance.

    4. Assessment

    Evaluations of generative models are often subjective in nature-quality, coherence, usefulness-whereas predictive models are objectively evaluated using accuracy, precision, recall, and error rates.

    A Practical Example

    Let’s consider a sample insurance company.

    A generative model is able to:

    • Create draft summaries of claims
    • Generate customer responses
    • Explain policy details in plain language

    A predictive model can:

    • Predict claim fraud probability
    • Estimate claim settlement amounts
    • Risk classification of claims

    Both models use data, but they serve entirely different functions.

    How the Training Approach Differs

    • The generative models learn by trying to reconstruct data-sometimes instances of data, like an image, or parts of data, like the next word in a sentence.
    • Predictive models learn by mapping input features to a known output: predict yes/no, high/medium/low risk, or numeric value.
    • This difference in training objectives leads to very different behaviours in real-world systems.

    Why Generative AI is getting more attention

    Generative AI has gained much attention because it:

    • Allows for natural human–computer interaction
    • Automates content-heavy workflows
    • Creative, design, and communication support
    • Acts as an intelligence layer that is flexible across many tasks

    However, generative AI is mostly combined with predictive models that will make sure control, validation, and decision-making are in place.

    When Predictive Models Are Still Essential

    Predictive models remain fundamental when:

    • Decisions carry financial, legal, or medical consequences.
    • Outputs should be explainable and auditable.
    • It should operate consistently and deterministically.

    Compliance is strictly regulated. In many mature systems, generative models support humans, while predictive models make or confirm final decisions.

    Summary

    The end The generative AI models focus on the creation of new and meaningful content, while predictive models focus on outcome forecasting and decision-making. Generative models will bring flexibility and creativity, while predictive models will bring precision and reliability. Together, they provide the backbone of contemporary AI-driven systems, balancing innovation with control.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 85
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 26/12/2025In: Technology

What is pre-training vs fine-tuning in AI models?

pre-training vs fine-tuning

artificial intelligencedeep learningfine-tuningmachine learningpre-trainingtransfer learning
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 26/12/2025 at 3:53 pm

    “The Big Picture: Why Two Training Stages Exist” Nowadays, training of AI models is not done in one step. In most cases, two phases of learning take place. These two phases of learning are known as pre-training and fine-tuning. Both phases have different objectives. One can consider pre-training toRead more

    “The Big Picture: Why Two Training Stages Exist”

    Nowadays, training of AI models is not done in one step. In most cases, two phases of learning take place. These two phases of learning are known as pre-training and fine-tuning. Both phases have different objectives.

    One can consider pre-training to be general education, and fine-tuning to be job-specific training.

    Definition of Pre-Training

    This is the first and most computationally expensive phase of an AI system’s life cycle. In this phase, the system is trained on very large and diverse datasets so that it can infer general patterns about the world from them.

    For language models, it would mean learning:

    • Grammar and sentence structure
    • Lexical meaning relationships
    • Common facts

    Conversations and directions typically follow this pattern:

    Significantly, during pre-training, the training of the model does not focus on solving a particular task. Rather, it trains the model to predict either missing values or next values, such as the next word in an utterance, and in doing so, it acquires a general idea of language or data.

    This stage may require:

    • Large datasets (Terabytes of Data)
    • Strong GPUs or TPUs
    • Weeks or months of training time

    After the pre-training process, the result will be a general-purpose foundation model.

    Definition of Fine-Tuning

    Fine-tuning takes place after a pre-training process, aiming at adjusting a general model to a particular task, field, or behavior.

    Instead of having to learn from scratch, the model can begin with all of its pre-trained knowledge and then fine-tune its internal parameters ever so slightly using a far smaller dataset.

    • Fine-tuning is performed in
    • Enhance accuracy for a specific task
    • Assist alignment of the model’s output with business and ethical imperatives
    • Train for domain-specific language (medical, legal, financial, etc.)
    • Control tone, format, and/or response type

    For instance, a universal language understanding model may be trained to:

    • Answer medical questions more safely
    • Claims classification
    • Aid developers with code
    • Follow organizational policies

    This stage is quicker, more economical, and more controlled than the pre-training stage.

    Main Points Explained Clearly

    Conclusion

    General intelligence is cultivated using pre-training, while specialization in expert knowledge is achieved through

    Data

    It uses broad, unstructured, and diverse data for pre-training. Fine-tuning requires curated, labeled, or instruction-driven data.

    Cost and Effort

    The pre-training process involves very high costs and requires large AI labs. However, fine-tuning is relatively cheap and can be done by enterprises.

    Model Behavior

    After pre-training, it knows “a little about a lot.” Then, after fine-tuning, it knows “a lot about a little.”

    A Practical Analogy

    Think of a doctor.

    • “Pre-training” is medical school, wherein the doctor acquires education about anatomy, physiology, and general medicine.
    • Fine-tuning refers to specialization. It may include specialties such as cardiology or
    • Specialization is impossible without pre-training. Fine-tuning is necessary for the doctor to remain specialist.

    Why Fine-Tuning Is Significant for Real-World Systems

    Raw pre-trained models aren’t typically good enough in production contexts. There’s a benefit to fine-tuning a:

    • Decrease hallucinations in critical domains
    • Enhance consistency and reliability
    • synchronize results with legal stipulations
    • Adapt to local language, work flows, and terms

    It is even more critical within industries such as the medical sector, financial sectors, and government institutions that require accuracy and adherence.

    Fine-Tuning vs Prompt Engineering

    It should be noted that fine-tuning is not the same as prompt engineering.

    • Prompt engineering helps to steer the model’s conduct by providing more refined instructions, without modifying the model.
    • No, fine-tuning simply adjusts internal model parameters, making it behave in a predictable manner for all inputs.
    • Organizations begin their journey of machine learning tasks from prompt engineering to fine-tuning when greater control is needed.

    Whether a fine-tuning task can replace

    No. Fine-tuning is wholly reliant upon the knowledge derived during pre-trained models. There is no possibility of deriving general intelligence using fine-tuning with small data sets—it only molds and shapes what already exists or is already present.

    In Summary

    Pre-training represents the foundation of understanding in data and language that AI systems have, while fine-tuning allows them to apply this knowledge in task-, domain-, and expectation-specific ways. Both are essential for what constitutes the spine of the development of modern artificial intelligence.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 83
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 26/12/2025In: Technology

How do foundation models differ from task-specific AI models?

foundation models differ from task-sp ...

ai modelsartificial intelligencedeep learningfoundation modelsmachine learningmodel architecture
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 26/12/2025 at 2:51 pm

    The Meaning of Ground From a higher perspective, the distinction between foundation models and task-specific AI models is based on scope and purpose. In other words, foundation models constitute general intelligence engines, while task-specific models have a singular purpose accomplishing a single tRead more

    The Meaning of Ground

    From a higher perspective, the distinction between foundation models and task-specific AI models is based on scope and purpose. In other words, foundation models constitute general intelligence engines, while task-specific models have a singular purpose accomplishing a single task.

    Foundation models might be envisioned as highly educated generalists, while task-specific models might be considered specialists trained to serve only one role in society.

    What Are Foundation Models?

    Foundation models are large-scale AI models. They require vast and diverse data sets. These data sets involve various domains like language, images, code, audio, and structure. Foundation models are not trained on a fixed task. They learn universal patterns and then convert them into task-specific models.

    Once trained, the same foundation model can be applied to the following tasks:

    • Text generation
    • Question Answering
    • Summar
    • Translation
    • Image understanding
    • Code assistance
    • Data analysis

    “These models are ‘ foundational’ because a variety of applications are built upon these models using a prompt, fine-tuning, or a light-weight adapter. ”

    What Are Task-Specific AI Models?

    The models are trained using a specific, narrow objective. Models are built, trained, and tested based on one specific, narrowly defined task.

    These include:

    • An email spam classifier
    • A face recognition system.
    • Medical Image Tumor Detector
    • A credit default prediction model
    • A speech-to-text engine for a given language

    These models are not meant for generalization for a domain other than their use case. For any domain other than their trained tasks, their performance abruptly deteriorates.

    Differences Explained in Simple Terms

    1. Scope of Intelligence

    Foundation models generalize the learned knowledge and can perform a large number of tasks without needing additional training. Task-specific models specialize in a single task or a single specific function and cannot be readily adapted or applied to other tasks.

    2. Training Methodology

    Foundation models are trained once on large datasets and are computationally intensive. Task-specific models are trained on smaller datasets but are specific to the task they are meant to serve.

    3. Reusability & Adapt

    An existing foundation model can be easily applied to different teams, departments, or industries. In general, a task-specific model will have to be recreated or retrained for each new task.

    4. Cost and Infrastructure

    Nonetheless, training a foundation model is costly but efficient in the use of models since they accomplish multiple tasks. Training task-specific models is rather inexpensive but turns costly if multiple models have to be developed.

    5. Performance Characteristics

    Task-specific models usually perform better than foundation models on a specific task. But for numerous tasks, foundation models provide “good enough” solutions that are much more desirable in practical systems.

    Actual Example

    Consider a hospital network.

    A foundation model can:

    1. Generate

    • Summarize patient files
    • Respond to questions from clinicians.
    • Create discharge summaries
    • Translation of medical records
    • Provide help regarding coding and billing questions

    Task-specific models could:

    • Pneumonia identification from chest X-rays alone
    • Both are important, but they are quite different.

    Why Foundation Models Are Gaining Popularity

    Organisations have begun to favor foundation models because they:

    • Cut the need for handling scores of different models
    • Accelerate adoption of AI solutions by other departments in
    • Allow fast experimentation with prompts over having to retrain
    • Support multimodal workflows (text + image + data combined)

    This has particular importance in business, healthcare, finance, and e-governance applications, which need to adapt to changing demands.

    Even when task-specific models are still useful

    Although foundation models have become increasingly popular, task-specific models continue to be very important for:

    • Approvals need to be deterministic
    • Very high accuracy is required for one task
    • Latency and compute are very constrained.
    • The job deals with sensitive or controlled data

    In principle many existing mature systems would employ foundation models for general intelligence and task-specific models for critical decision-making.

    In Summary

    Foundation models add the ingredient of width or generic capability with scalability and adaptability. Task-specific models add the ingredient of depth or focused capability with efficiency. Contemporary AI models and applications increasingly incorporate the best aspects of the first two models.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 74
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 06/12/2025In: Technology

What is a Transformer, and how does self-attention work?

a Transformer, and how does self-atte ...

artificial intelligenceattentiondeep learningmachine learningnatural language processingtransformer-model
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 06/12/2025 at 1:03 pm

    1. The Big Idea Behind the Transformer Instead of reading a sentence word-by-word as in an RNN, the Transformer reads the whole sentence in parallel. This alone dramatically speeds up training. But then the natural question would be: How does the model know which words relate to each other if it isRead more

    1. The Big Idea Behind the Transformer

    Instead of reading a sentence word-by-word as in an RNN, the Transformer reads the whole sentence in parallel. This alone dramatically speeds up training.

    But then the natural question would be:

    • How does the model know which words relate to each other if it is seeing everything at once?
    • This is where self-attention kicks in.
    • Self-attention allows the model to dynamically calculate the importance scores of other words in the sequence. For instance, in the sentence:

    “The cat which you saw yesterday was sleeping.”

    When predicting something about “cat”, the model can learn to pay stronger attention to “was sleeping” than to “yesterday”, because the relationship is more semantically relevant.

    Transformers do this kind of reasoning for each word at each layer.

    2. How Self-Attention Actually Works (Human Explanation)

    Self-attention sounds complex but the intuition is surprisingly simple:

    • Think of each token, which includes words, subwords, or other symbols, as a person sitting at a conference table.

    Everybody gets an opportunity to “look around the room” to decide:

    • To whom should I listen?
    • How much should I care about what they say?
    • How do their words influence what I will say next?

    Self-attention calculates these “listening strengths” mathematically.

    3. The Q, K, V Mechanism (Explained in Human Language)

    Each token creates three different vectors:

    • Query (Q) – What am I looking for?
    • Key (K) – what do I contain that others may search for?
    • Value.V- what information will I share if someone pays attention to me?

    Analogical is as follows:

    • Imagine a team meeting.
    • Your Query is what you are trying to comprehend, such as “Who has updates relevant to my task?”
    • Everyone’s Key represents whether they have something you should focus on (“I handle task X.”)
    • Everyone’s Value is the content (“Here’s my update.”)
    • It computes compatibility scores between every Query–Key pair.
    • These scores determine how much the Query token attends to each other token.

    Finally, it creates a weighted combination of the Values, and that becomes the token’s updated representation.

    4. Why This Is So Powerful

    Self-attention gives each token a global view of the sequence—not a limited window like RNNs.

    This enables the model to:

    • Capture long-range dependencies
    • Understand context more precisely
    • Parallelize training efficiently
    • Capture meaning in both directions – bidirectional context

    And because multiple attention heads run in parallel (multi-head attention), the model learns different kinds of relationships at once for example:

    • syntactic structure
    • Semantic Similarity
    • positional relationships
    • co-reference: linking pronouns to nouns

    Each head learns, through which to interpret the input in a different lens.

    5. Why Transformers Replaced RNNs and LSTMs

    • Performance: They simply have better accuracy on almost all NLP tasks.
    • Speed: They train on GPUs really well because of parallelism.
    • Scalability: Self-attention scales well as models grow from millions to billions of parameters.

    Flexibility Transformers are not limited to text anymore, they also power:

    • image models
    • Speech models
    • video understanding

    GPT-4o, Gemini 2.0, Claude 3.x-like multimodal systems

    agents, code models, scientific models

    Transformers are now the universal backbone of modern AI.

    6. A Quick Example to Tie It All Together

    Consider the sentence:

    • “I poured water into the bottle because it was empty.”
    • Humans know that “it” refers to “the bottle,” not the water.

    Self-attention allows the model to learn this by assigning a high attention weight between “it” and “bottle,” and a low weight between “it” and “water.”

    This dynamic relational understanding is exactly why Transformers can perform reasoning, translation, summarization, and even coding.

    Summary-Final (Interview-Friendly Version)

    A Transformer is a neural network architecture built entirely around the idea of self-attention, which allows each token in a sequence to weigh the importance of every other token. It processes sequences in parallel, making it faster, more scalable, and more accurate than previous models like RNNs and LSTMs.

    Self-attention works by generating Query, Key, and Value vectors for each token, computing relevance scores between every pair of tokens, and producing context-rich representations. This ability to model global relationships is the core reason why Transformers have become the foundation of modern AI, powering everything from language models to multimodal systems.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 105
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 17/11/2025In: Technology

How will multimodal models (text + image + audio + video) change everyday computing?

text + image + audio + video

ai models xartificial intelligenceeveryday computinghuman-computer interactionmultimodal aitechnology trends
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 17/11/2025 at 4:07 pm

    How Multimodal Models Will Change Everyday Computing Over the last decade, we have seen technology get smaller, quicker, and more intuitive. But multimodal AI-computer systems that grasp text, images, audio, video, and actions together-is more than the next update; it's the leap that will change comRead more

    How Multimodal Models Will Change Everyday Computing

    Over the last decade, we have seen technology get smaller, quicker, and more intuitive. But multimodal AI-computer systems that grasp text, images, audio, video, and actions together-is more than the next update; it’s the leap that will change computers from tools with which we operate to partners with whom we will collaborate.

    Today, you tell a computer what to do.

    Tomorrow, you will show it, tell it, demonstrate it or even let it observe – and it will understand.

    Let’s see how this changes everyday life.

    1. Computers will finally understand context like humans do.

    At the moment, your laptop or phone only understands typed or spoken commands. It doesn’t “see” your screen or “hear” the environment in a meaningful way.

    Multimodal AI changes that.

    Imagine saying:

    • “Fix this error” while pointing your camera at a screen.

    Error The AI will read the error message, understand your voice tone, analyze the background noise, and reply:

    • “This is a Java null pointer issue. Let me rewrite the method so it handles the edge case.”
    • This is the first time computers gain real sensory understanding.
    • They won’t simply process information, but actively perceive.

    2. Software will become invisible tasks will flow through conversation + demonstration

    Today you switch between apps: Google, WhatsApp, Excel, VS Code, Camera…

    In the multimodal world, you’ll be interacting with tasks, not apps.

    You might say:

    • “Generate a summary of this video call and send it to my team.
    • “Crop me out from this photo and put me on a white background.”
    • “Watch this YouTube tutorial and create a script based on it.”
    • No need to open editing tools or switch windows.

    The AI becomes the layer that controls your tools for you-sort of like having a personal operating system inside your operating system.

    3. The New Generation of Personal Assistants: Thoughtfully Observant rather than Just Reactive

    Siri and Alexa feel robotic because they are single-modal; they understand speech alone.

    Future assistants will:

    • See what you’re working on
    • Hear your environment
    • Read what’s on your screen
    • Watch your workflow
    • Predict what you want next

    Imagine doing night shifts, and your assistant politely says:

    • “You’ve been coding for 3 hours. Want me to draft tomorrow’s meeting notes while you finish this function?
    • It will feel like a real teammate organizing, reminding, optimizing, and learning your patterns.

    4. Workflows will become faster, more natural and less technical.

    Multimodal AI will turn the most complicated tasks into a single request.

    Examples:

    • Documents

    “Convert this handwritten page into a formatted Word doc and highlight the action points.

    • Design

    “Here’s a wireframe; make it into an attractive UI mockup with three color themes.

    •  Learning

    “Watch this physics video and give me a summary for beginners with examples.

    •  Creative

    “Use my voice and this melody to create a clean studio-level version.”

    We will move from doing the task to describing the result.

    This reduces the technical skill barrier for everyone.

    5. Education and training will become more interactive and personalized.

    Instead of just reading text or watching a video, a multimodal tutor can:

    • Grade assignments by reading handwriting
    • Explain concepts while looking at what the student is solving.
    • Watch students practice skills-music, sports, drawing-and give feedback in real-time
    • Analyze tone, expressions, and understanding levels
    • Learning develops into a dynamic, two-way conversation rather than a one-way lecture.

    6. Healthcare, Fitness, and Lifestyle Will Benefit Immensely

    • Imagine this:
    • It watches your form while you work out and corrects it.
    • It listens to your cough and analyses it.
    • It studies your plate of food and calculates nutrition.
    • It reads your expression and detects stress or burnout.
    • It processes diagnostic medical images or videos.
    • This is proactive, everyday health support-not just diagnostics.

    7. The Creative Industries Will Explode With New Possibilities

    • AI will not replace creativity; it’ll supercharge it.
    • Film editors can tell: “Trim the awkward pauses from this interview.”
    • Musicians can hum a tune and generate a full composition.
    • Users can upload a video scene and request AI to write dialogues.
    • Designers can turn sketches, voice notes, and references into full visuals.

    Being creative then becomes more about imagination and less about mastering tools.

    8. Computing Will Feel More Human, Less Mechanical

    The most profound change?

    We won’t have to “learn computers” anymore; rather, computers will learn us.

    We’ll be communicating with machines using:

    • Voice
    • Gestures
    • Screenshots
    • Photos
    • Real-world objects
    • Videos
    • Physical context

    That’s precisely how human beings communicate with one another.

    Computing becomes intuitive almost invisible.

    Overview: Multimodal AI makes the computer an intelligent companion.

    They shall see, listen, read, and make sense of the world as we do. They will help us at work, home, school, and in creative fields. They will make digital tasks natural and human-friendly. They will reduce the need for complex software skills. They will shift computing from “operating apps” to “achieving outcomes.” The next wave of AI is not about bigger models; it’s about smarter interaction.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 90
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 17/11/2025In: Stocks Market, Technology

What sectors will benefit most from the next wave of AI innovation?

the next wave of AI innovation

ai innovationartificial intelligenceautomationdigital transformationfuture industrietech trends
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 17/11/2025 at 3:29 pm

    Healthcare diagnostics, workflows, drug R&D, and care delivery Why: healthcare has huge amounts of structured and unstructured data (medical images, EHR notes, genomics), enormous human cost when errors occur, and big inefficiencies in admin work. How AI helps: faster and earlier diagnosis fromRead more

    Healthcare diagnostics, workflows, drug R&D, and care delivery

    • Why: healthcare has huge amounts of structured and unstructured data (medical images, EHR notes, genomics), enormous human cost when errors occur, and big inefficiencies in admin work.
    • How AI helps: faster and earlier diagnosis from imaging and wearable data, AI assistants that reduce clinician documentation burden, drug discovery acceleration, triage and remote monitoring. Microsoft, Nuance and other players are shipping clinician copilots and voice/ambient assistants that cut admin time and improve documentation workflows.
    • Upside: better outcomes, lower cost per patient, faster R&D cycles.
    • Risks: bias in training data, regulatory hurdles, patient privacy, and over-reliance on opaque models.

    Finance trading, risk, ops automation, personalization

    • Why: financial services run on patterns and probability; data is plentiful and decisions are high-value.
    • How AI helps: smarter algorithmic trading, real-time fraud detection, automated compliance (RegTech), risk modelling, and hyper-personalized wealth/advisory services. Large incumbents are deploying ML for everything from credit underwriting to trade execution.
    • Upside: margin expansion from automation, faster detection of bad actors, and new product personalization.
    • Risks: model fragility in regime shifts, regulatory scrutiny, and systemic risk if many players use similar models.

    Manufacturing (Industry 4.0) predictive maintenance, quality, and digital twins

    • Why: manufacturing plants generate sensor/IOT time-series data and lose real money to unplanned downtime and defects.
    • How AI helps: predictive maintenance that forecasts failures, computer-vision quality inspection, process optimization, and digital twins that let firms simulate changes before applying them to real equipment. Academic and industry work shows measurable downtime reductions and efficiency gains.
    • Upside: big cost savings, higher throughput, longer equipment life.
    • Risks: integration complexity, data cleanliness, and up-front sensor/IT investment.

    Transportation & Logistics routing, warehouses, and supply-chain resilience

    • Why: logistics is optimization-first: routing, inventory, demand forecasting all fit AI. The cost of getting it wrong is large and visible.
    • How AI helps: dynamic route optimization, demand forecasting, warehouse robotics orchestration, and better end-to-end visibility that reduces lead times and stockouts. Market analyses show explosive investment and growth in AI logistics tools.
    • Upside: lower delivery times/costs, fewer lost goods, and better margins for retailers and carriers.
    • Risks: brittle models in crisis scenarios, data-sharing frictions across partners, and workforce shifts.

    Cybersecurity detection, response orchestration, and risk scoring

    • Why: attackers are using AI too, so defenders must use AI to keep up. There’s a continual arms race; automated detection and response scale better than pure human ops.
    • How AI helps: anomaly detection across networks, automating incident triage and playbooks, and reducing time-to-contain. Security vendors and threat reports make clear AI is reshaping both offense and defense.
    • Upside: faster reaction to breaches and fewer false positives.
    • Risks: adversarial AI, deepfakes, and attackers using models to massively scale attacks.

    Education personalized tutoring, content generation, and assessment

    • Why: learning is inherently personal; AI can tailor instruction, freeing teachers for mentorship and higher-value tasks.
    • How AI helps: intelligent tutoring systems that adapt pace/difficulty, automated feedback on writing and projects, and content generation for practice exercises. Early studies and product rollouts show improved engagement and learning outcomes.
    • Upside: scalable, affordable tutoring and faster skill acquisition.
    • Risks: equity/ access gaps, data privacy for minors, and loss of important human mentoring if over-automated.

    Retail & E-commerce personalization, demand forecasting, and inventory

    • Why: retail generates behavioral data at scale (clicks, purchases, returns). Personalization drives conversion and loyalty.
    • How AI helps: product recommendation engines, dynamic pricing, fraud prevention, and micro-fulfillment optimization. Result: higher AOV (average order value), fewer stockouts, better customer retention.
    • Risks: privacy backlash, algorithmic bias in offers, and dependence on data pipelines.

    Energy & Utilities grid optimization and predictive asset management

    • Why: grids and generation assets produce continuous operational data; balancing supply/demand with renewables is a forecasting problem.
    • How AI helps: demand forecasting, predictive asset maintenance for turbines/transformers, dynamic load balancing for renewables and storage. That improves reliability and reduces cost per MWh.
    • Risks: safety-critical consequences if models fail; need for robust human oversight.

    Agriculture precision farming, yield prediction, and input optimization

    • Why: small improvements in yield or input efficiency scale to big value for food systems.
    • How AI helps: satellite/drone imagery analysis for crop health, precision irrigation/fertiliser recommendations, and yield forecasting that stabilizes supply chains.
    • Risks: access for smallholders, data ownership, and capital costs for sensors.

    Media, Entertainment & Advertising content creation, discovery, and monetization

    • Why: generative models change how content is made and personalized. Attention is the currency here.
    • How AI helps: automated editing/augmentation, personalized feeds, ad targeting optimization, and low-cost creation of audio/visual assets.
    • Risks: copyright/creative ownership fights, content authenticity issues, and platform moderation headaches.

    Legal & Professional Services automation of routine analysis and document drafting

    • Why: legal work has lots of document patterns and discovery tasks where accuracy plus speed is valuable.
    • How AI helps: contract review, discovery automation, legal research, and first-draft memos letting lawyers focus on strategy.
    • Risks: malpractice risk if models hallucinate; firms must validate outputs carefully.

    Common cross-sector themes (the human part you should care about)

    1. Augmentation, not replacement (mostly). Across sectors the most sustainable wins come where AI augments expert humans (doctors, pilots, engineers), removing tedium and surfacing better decisions.

    2. Data + integration = moat. Companies that own clean, proprietary, and well-integrated datasets will benefit most.

    3. Regulation & trust matter. Healthcare, finance, energy these are regulated domains. Compliance, explainability, and robust testing are table stakes.

    4. Operationalizing is the hard part. Building a model is easy compared to deploying it in a live, safety-sensitive workflow with monitoring, retraining, and governance.

    5. Economic winners will pair models with domain expertise. Firms that combine AI talent with industry domain experts will outcompete those that just buy off-the-shelf models.

    Quick practical advice (for investors, product folks, or job-seekers)

    • Investors: watch companies that own data and have clear paths to monetize AI (e.g., healthcare SaaS with clinical data, logistics platforms with routing/warehouse signals).

    • Product teams: start with high-pain, high-frequency tasks (billing, triage, inspection) and build from there.

    • Job seekers: learn applied ML tools plus domain knowledge (e.g., ML for finance, or ML for radiology) hybrid skills are prized.

    TL;DR (short human answer)

    The next wave of AI will most strongly uplift healthcare, finance, manufacturing, logistics, cybersecurity, and education because those sectors have lots of data, clear financial pain from errors/inefficiencies, and big opportunities for automation and augmentation. Expect major productivity gains, but also new regulatory, safety, and adversarial challenges. 

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 123
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 07/11/2025In: Technology

What is an AI agent? How does agentic AI differ from traditional ML models?

agentic AI differ from traditional ML ...

agentic-aiagentsaiartificial intelligenceautonomous-systemsmachine learning
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 07/11/2025 at 3:03 pm

    An AI agent is But that is not all: An agent is something more than a predictive or classification model; rather, it is an autonomous system that may take an action directed towards some goal. Put differently, An AI agent processes information, but it doesn't stop there. It's in the comprehension, tRead more

    An AI agent is

    But that is not all: An agent is something more than a predictive or classification model; rather, it is an autonomous system that may take an action directed towards some goal.

    Put differently,

    An AI agent processes information, but it doesn’t stop there. It’s in the comprehension, the memory, and the goals that will determine what comes next.

    Let’s consider three key capabilities of an AI agent:

    • Perception: It collects information from sensors, APIs, documents, user prompts, amongst others.
    • Reasoning: It knows context, and it plans or decides what to do next.
    • What it does: Performs an action list; this can invoke another API, write to a file, send an email, or initiate a workflow.

    A classical ML model could predict whether a transaction is fraudulent.

    But an AI agent could:

    • Detect suspicious transactions,
    • Look up the customer’s account history.
    • Send a confirmation email,

    Suspend the account if no response comes and do all that without a human telling it step by step.

    Under the Hood: What Makes an AI Agent “Agentic”?

    Genuinely agentic AI systems, by contrast, extend large language models like GPT-5 or Claude with more layers of processing and give them a much greater degree of autonomy and goal-directedness:

    Goal Orientation:

    • Instead of answering to one prompt, their focus is on an outcome: “book a ticket,” “generate a report”, or “solve a support ticket.”

    Planning and Reasoning:

    • They split a big problem up into smaller steps, for example, “first fetch data, then clean it, then summarize it”.

    Tool Use / API Integration:

    • They can call other functions and APIs. For instance, they could query a database, send an email, or interface to some other system.

    Memory:

    • They remember previous interactions or actions such that multi-turn reasoning and continuity can be achieved.

    Feedback Loops:

    • They can evaluate if they succeeded with their action, or failed, and thus adjust the next action just as human beings do.

    These components make the AI agents feel much less like “smart calculators” and more like “junior digital coworkers”.

    A Practical Example

    Now, let us consider a simple use case comparison wherein health-scheme claim analysis is close to your domain:

    In essence, any regular ML model would take the claims data as input and predict:

    → “The chance of this claim being fraudulent is 82%.”

    An AI agent could:

    • Check the claim.
    • Pull histories of hospitals and beneficiaries from APIs.
    • Check for consistency in the document.
    • Flag the anomalies and give a summary report to an officer.
    • If no response, follow up in 48 hours.

    That is the key shift: the model informs, while the agent initiates.

    Why the Shift to Agentic AI Matters

    Autonomy → Efficiency:

    • Agents can handle a repetitive workflow without constant human supervision.

    Scalability → Real-World Value:

    • You can deploy thousands of agents for customer support, logistics, data validation, or research tasks.

    Context Retention → Better Reasoning:

    • Since they retain memory and context, they can perform multitask processes with ease, much like any human analyst.

    Interoperability → System Integration:

    • They can interact with enterprise systems such as databases, CRMs, dashboards, or APIs to close the gap between AI predictions and business actions.

     Limitations & Ethical Considerations

    While agentic AI is powerful, it has also opened several new challenges:

    • Hallucination risk: agents may act on false assumptions.
    • Accountability: Who is responsible in case an AI agent made the wrong decision?
    • Security: API access granted to agents could be misused and cause damage.
    • Over-autonomy: Many applications, such as those in healthcare or finance.

    do need human-in-the-loop. Hence, the current trend is hybrid autonomy: AI agents that act independently but always escalate key decisions to humans.

    Body Language by Jane Smith

    “An AI agent is an intelligent system that analyzes data while independently taking autonomous actions toward a goal. Unlike traditional ML models that stop at prediction, agentic AI is able to reason, plan, use tools, and remember context effectively bridging the gap between intelligence and action. While the traditional models are static and task-specific, the agentic systems are dynamic and adaptive, capable of handling end-to-end workflows with minimal supervision.”

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 135
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 13/10/2025In: Technology

What is AI?

AI

aiartificial intelligenceautomationfuture-of-techmachine learningtechnology
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 13/10/2025 at 12:55 pm

    1. The Simple Idea: Machines Taught to "Think" Artificial Intelligence is the design of making computers perform intelligent things — not just by following instructions, but actually learning from information and improving with time. In regular programming, humans teach computers to accomplish thingRead more

    1. The Simple Idea: Machines Taught to “Think”

    Artificial Intelligence is the design of making computers perform intelligent things — not just by following instructions, but actually learning from information and improving with time.

    In regular programming, humans teach computers to accomplish things step by step.

    In AI, computers learn to resolve things on their own by gaining expertise on patterns in information.

    For example

    When Siri quotes back the weather to you, it is not reading from a script. It is recognizing your voice, interpreting your question, accessing the right information, and responding in its own words — all driven by AI.

    2. How AI “Learns” — The Power of Data and Algorithms

    Computers are instructed with so-called machine learning —inferring catalogs of vast amounts of data so that they may learn patterns.

    • Machine Learning (ML): The machine learns by example, not by rule. Display a thousand images of dogs and cats, and it may learn to tell them apart without learning to do so.
    • Deep Learning: Latest generation of ML based on neural networks —stacks of algorithms imitating the way we think.

    That’s how machines can now identify faces, translate text, or compose music.

    3. Examples of AI in Your Daily Life

    You probably interact with AI dozens of times a day — maybe without even realizing it.

    • Your phone: Face ID, voice assistants, and autocorrect.
    • Streaming: Netflix or Spotify recommends you like something.
    • Shopping: Amazon’s “Recommended for you” page.
    • Health care: AI is diagnosing diseases from X-rays faster than doctors.
    • Cars: Self-driving vehicles with sensors and AI delivering split-second decisions.

    AI isn’t science fiction anymore — it’s present in our reality.

     4. AI types

    AI isn’t one entity — there are levels:

    • Narrow AI (Weak AI): Designed to perform a single task, like ChatGPT responding or Google Maps route navigation.
    • General AI (Strong AI): A Hypothetical kind that would perhaps understand and reason in several fields as any common human individual, yet to be achieved.
    • Superintelligent AI: Another level higher than human intelligence — still a future goal, but widely seen in the movies.

    We already have Narrow AI, mostly, but it is already incredibly powerful.

     5. The Human Side — Pros and Cons

    AI is full of promise and also challenges our minds to do the hard thinking.

    Advantages:

    • Smart healthcare diagnosis
    • Personalized learning
    • Weather prediction and disaster simulations
    • Faster science and technology innovation

    Disadvantages:

    • Bias: AI can be biased in decision-making if AI is trained using biased data.
    • Job loss: Automation will displace some jobs, especially repetitive ones.
    • Privacy: AI systems gather huge amounts of personal data.
    • Ethics: Who would be liable if an AI erred — the maker, the user, or the machine?

    The emergence of AI presses us to redefine what it means to be human in an intelligent machine-shared world.

    6. The Future of AI — Collaboration, Not Competition

    The future of AI is not one of machines becoming human, but humans and AI cooperating. Consider physicians making diagnoses earlier with AI technology, educators adapting lessons to each student, or cities becoming intelligent and green with AI planning.

    AI will progress, yet it will never cease needing human imagination, empathy, and morals to steer it.

     Last Thought

    Artificial Intelligence is not a technology — it’s a demonstration of humans of the necessity to understand intelligence itself. It’s a matter of projecting our minds beyond biology. The more we advance in AI, the more the question shifts from “What can AI do?” to “How do we use it well to empower all?”

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 155
  • 0
Answer
daniyasiddiquiEditor’s Choice
Asked: 10/10/2025In: Technology

Are multimodal AI models redefining how humans and machines communicate?

humans and machines

ai communicationartificial intelligencecomputer visionmultimodal ainatural language processing
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 10/10/2025 at 3:43 pm

    From Text to a World of Senses Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-baseRead more

    From Text to a World of Senses

    Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-based ones like Claude can ingest text, pictures, sound, and even video all simultaneously in the same manner. That is the implication that instead of describing something you see to someone, you just show them. You can upload a photo, ask things of it, and get useful answers in real-time — from object detection to pattern recognition to even pretty-pleasing visual criticism.

    This shift mirrors how we naturally communicate: we gesture with our hands wildly, rely on tone, face, and context — not necessarily words. In that way, AI is learning our language step-by-step, not vice versa.

    A New Age of Interaction

    Picture requesting your AI companion not only to “plan a trip,” but to examine a picture of your go-to vacation spot, hear your tone to gauge your level of excitement, and subsequently create a trip suitable for your mood and beauty settings. Or consider students employing multimodal AI instructors who can read their scribbled notes, observe them working through math problems, and provide customized corrections — much like a human teacher would.

    Businesses are already using this technology in customer support, healthcare, and design. A physician, for instance, can upload scan images and sketch patient symptoms; the AI reads images and text alike to assist with diagnosis. Designers can enter sketches, mood boards, and voice cues in design to get true creative results.

    Closing the gap between Accessibility and Comprehension

    Multimodal AI is also breaking down barriers for the disabled. Blind people can now rely on AI as their eyes and tell them what is happening in real time. Speech or writing disabled people can send messages with gestures or images instead. The result is a barrier-free digital society where information is not limited to one form of input.

    Challenges Along the Way

    But it’s not a silky ride the entire distance. Multimodal systems are complex — they have to combine and understand multiple signals in the correct manner, without mixing up intent or cultural background. Emotion detection or reading facial expressions, for instance, is potentially ethically and privacy-stealthily dubious. And there is also fear of misinformation — especially as AI gets better at creating realistic imagery, sound, and video.

    Functionalizing these humongous systems also requires mountains of computation and data, which have greater environmental and security implications.

    The Human Touch Still Matters

    Even in the presence of multimodal AI, it doesn’t replace human perception — it augments it. They can recognize patterns and reflect empathy, but genuine human connection is still rooted in experience, emotion, and ethics. The goal isn’t to come up with machines that replace communication, but to come up with machines that help us communicate, learn, and connect more effectively.

    In Conclusion

    Multimodal AI is redefining human-computer interaction to make it more human-like, visual, and emotionally smart. It’s not about what we tell AI anymore — it’s about what we demonstrate, experience, and mean. This brings us closer to the dream of the future in which technology might hear us like a fellow human being — bridging the gap between human imagination and machine intelligence.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 163
  • 0
Answer
mohdanasMost Helpful
Asked: 22/09/2025In: Technology

Can AI reliably switch between “fast” and “deliberate” thinking modes, like humans do?

“fast” and “deliberate” thinking mode ...

ai cognitionai decision makingartificial intelligencecognitive modelsfast vs deliberate thinkinghuman-like ai
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 22/09/2025 at 4:00 pm

     How Humans Think: Fast vs. Slow Psychologists like to talk about two systems of thought: Fast thinking (System 1): quick, impulsive, automatic. It's what you do when you dodge a ball, recognize a face, or repeat "2+2=4" on autopilot. Deliberate thinking (System 2): slow, effortful, analytical. It'sRead more

     How Humans Think: Fast vs. Slow

    Psychologists like to talk about two systems of thought:

    • Fast thinking (System 1): quick, impulsive, automatic. It’s what you do when you dodge a ball, recognize a face, or repeat “2+2=4” on autopilot.
    • Deliberate thinking (System 2): slow, effortful, analytical. It’s what you use when you create a budget, solve a tricky puzzle, or make a moral decision.

    Humans always switch between the two depending on the situation. We use shortcuts most of the time, but when things get complicated, we resort to conscious thinking.

     How AI Thinks Today

    Today’s AI systems actually don’t have “two brains” like we do. Instead, they work more like an incredibly powerful engine:

    • When you ask it a simple fact-based question, they come up with a quick, smooth answer.
    • When you ask them something more complex, they appear to slow down, giving them well-defined steps of logic—but in the background, it’s the same process, only done differently.

    Part of more advanced AI work is experimenting with other “modes” of reasoning:

    • Fast mode: a speedy, heuristics-based run-through, for simple questions or when being fast is more important than depth.
    • Deliberate mode: a slower, step-by-step thought process (even making its own internal “notes”) to approach more complex or high-stakes tasks.

    This is similar to what people do, but it’s not quite human yet—AI will need to have explicit design for mode-switching, while people switch unconsciously.

    Why This Matters for People

    Imagine a doctor using an AI assistant:

    • In fast mode, the AI would quickly pull up suitable patient charts, laboratory test results, or medical journals.
    • In deliberate mode, the AI would go slowly to analyze those charts, consider several lines of action, and give lengthy explanations of its decisions.

    Or a student:

    • Fast mode helps with quick homework solutions or synopses.
    • Deliberate mode leads them through steps of reasoning, similar to an imbedded tutor.

    If AI can alternate between these modes reliably, it becomes more helpful and trustworthy—not a fast mouth always, but also not a careful thinker when not needed.

    The Challenges

    • Reliability: Humans know when to pace (though never flawlessly). AI often does not “know what it doesn’t know,” so it might stay in fast mode when thoughtful consideration is needed.
    • Transparency: In deliberate mode, AI may be able to produce explanations that seem convincing but are still lacking (so-called “hallucinations”).
    • Efficiency trade-offs: Deliberate mode is more computationally intensive, so slower and more costly. The compromise will be a balancing act between speed and depth.
    • Trust: People will have a tendency to over-trust fast mode responses that sound assertive but aren’t well-reasoned.

     Looking Ahead

    Researchers are now building meta-reasoning—allowing AI not just to answer, but to decide how to answer. Someday we might have AIs that:

    • Start out in speed mode but automatically switch to careful mode when they feel they need to.
    • Offer users the choice: “Quick version or deep dive?”

    Know context—appreciating that medical treatment must involve slow, careful consideration, but only a quick answer is required for a restaurant recommendation.

    In Human Terms

    Now, AI is such a student who always hurries to provide an answer, occasionally brilliant, occasionally hasty. Then there is bringing AI to resemble an old pro—person who has the reflex to trust intuition and sense when to refrain, think deeply, and double-check before responding.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 1
  • 1
  • 154
  • 0
Answer
Load More Questions

Sidebar

Ask A Question

Stats

  • Questions 548
  • Answers 1k
  • Posts 20
  • Best Answers 21
  • Popular
  • Answers
  • mohdanas

    Are AI video generat

    • 858 Answers
  • daniyasiddiqui

    “What lifestyle habi

    • 7 Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • RobertMib
    RobertMib added an answer Кент казино работает в онлайн формате и не требует установки программ. Достаточно открыть сайт в браузере. Игры корректно запускаются на… 26/01/2026 at 6:11 pm
  • tyri v piter_vhea
    tyri v piter_vhea added an answer тур в петербург [url=https://tury-v-piter.ru/]тур в петербург[/url] . 26/01/2026 at 6:06 pm
  • avtobysnie ekskyrsii po sankt peterbyrgy_nePl
    avtobysnie ekskyrsii po sankt peterbyrgy_nePl added an answer культурный маршрут спб [url=https://avtobusnye-ekskursii-po-spb.ru/]avtobusnye-ekskursii-po-spb.ru[/url] . 26/01/2026 at 6:05 pm

Top Members

Trending Tags

ai aiineducation ai in education analytics artificialintelligence artificial intelligence company deep learning digital health edtech education health investing machine learning machinelearning news people tariffs technology trade policy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved