Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/modeltraining
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
daniyasiddiquiEditor’s Choice
Asked: 28/12/2025In: Technology

How is prompt engineering different from traditional model training?

prompt engineering different from tra ...

aidevelopmentartificialintelligencegenerativeailargelanguagemodelsmachinelearningmodeltraining
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 28/12/2025 at 4:05 pm

    What Is Traditional Model Training Conventional training of models is essentially the development and optimization of an AI system by exposing it to data and optimizing its internal parameters accordingly. Here, the team of developers gathers data from various sources and labels it and then employsRead more

    What Is Traditional Model Training

    Conventional training of models is essentially the development and optimization of an AI system by exposing it to data and optimizing its internal parameters accordingly. Here, the team of developers gathers data from various sources and labels it and then employs algorithms that reduce an error by iterating numerous times.

    While training, the system will learn about the patterns from the data over a period of time. For instance, an email spam filter system will learn to categorize those emails by training thousands to millions of emails. If the system is performing poorly, engineers would require retraining the system using better data and/or algorithms.

    This process usually involves:

    • Huge amounts of quality data
    • High computing power (GPUs/TP
    • Time-consuming experimentation and validation
    • Machine learning knowledge for specialized applications

    After it is trained, it acts in a way that cannot be changed much until it is retrained again.

    What is Prompt Engineering?

    “Prompt Engineering” is basically designing and fine-tuning these input instructions or prompts to provide to a pre-trained model of AI technology, and specifically large language models to this point in our discussion, so as to produce better and more meaningful results from these models. The technique of prompt engineering operates at a purely interaction level and does not necessarily adjust weights.

    In general, the prompt may contain instructions, context, examples, constraints, and/or formatting aids. As an example, the difference between the question “summarize this text” and “summarize this text in simple language for a nonspecialist” influences the response to the question asked.

    Prompt engineering is based on:

    • Clear and well-structured instructions
    • Establishing Background and Defining Roles
    • Examples (few-shot prompting)
    • Iterative refinement by testing

    It doesn’t change the model itself, but the way we communicate with the model will be different.

    Key Points of Contrast between Prompt Engineering and Conventional Training

    1. Comparing Model Modification and Model Usage

    “Traditional training involves modifying the parameters of the model to optimize performance. Prompt engineering involves no modification of the model—only how to better utilize what knowledge already exists within it.”

    2. Data and Resource Requirements

    Model training involves extensive data, human labeling, and costly infrastructure. Contrast this with prompt design, which can be performed at low cost with minimal data and does not require training data.

    3. Speed and Flexibility

    Model training and retraining can take several days or weeks. Prompt engineering enables instant changes to the behavioral pattern through changes to the prompt and thus is highly adaptable and amenable to rapid experimentation.

    4. Skill Sets Involved

    “Traditional training involves special knowledge of statistics, optimization, and machine learning paradigms. Prompt engineering stresses the need for knowledge of the field, clarifying messages, and structuring instructions in a logical manner.”

    5. Scope of Control

    Training the model allows one to have a high, long-term degree of control over the performance of particular tasks. It allows one to have a high, surface-level degree of control over the performance of multiple tasks.

    Why Prompt Engineering has Emerged to be So Crucial

    The emergence of large general-purpose models has changed the dynamics for the application of AI in organizations. Instead of training models for different tasks, a team can utilize a single highly advanced model using the prompt method. The trend has greatly eased the adoption process and accelerated the pace of innovation,

    Additionally, “prompt engineering enables scaling through customization,” and various prompts may be used to customize outputs for “marketing, healthcare writing, educational content, customer service, or policy analysis,” through “the same model.”

    Shortcomings of Prompt Engineering

    Despite its power, there are some boundaries of prompt engineering. For example, neither prompt engineering nor any other method can teach the AI new information, remove deeply set biases, or function correctly all the time. Specialized or governed applications still need traditional or fine-tuning approaches.

    Conclusion

    At a very conceptual level, training a traditional model involves creating intelligence, whereas prompt engineering involves guiding this intelligence. Training modifies what a model knows, whereas prompt engineering modifies how a certain body of knowledge can be utilized. In this way, both of these aspects combine to constitute methodologies that create contrasting trajectories in AI development.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 1
  • 0
Answer

Sidebar

Ask A Question

Stats

  • Questions 547
  • Answers 598
  • Posts 4
  • Best Answers 21
  • Popular
  • Answers
  • mohdanas

    Are AI video generat

    • 63 Answers
  • daniyasiddiqui

    “What lifestyle habi

    • 6 Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • RobertThype
    RobertThype added an answer снять квартиру в гродно https://newgrodno.ru 28/12/2025 at 8:17 pm
  • studiya-dizayna-365
    studiya-dizayna-365 added an answer дизайн студия интерьера санкт петербург дизайн бюро 28/12/2025 at 5:35 pm
  • elon-casino-842
    elon-casino-842 added an answer Play online at elonbet casino: slots, live casino, and special offers. We explain the rules, limits, verification, and payments to… 28/12/2025 at 5:15 pm

Top Members

Trending Tags

ai aiineducation ai in education analytics artificialintelligence artificial intelligence company deep learning digital health edtech education health investing machine learning machinelearning news people tariffs technology trade policy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved