Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/multimodal ai
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
mohdanasMost Helpful
Asked: 14/10/2025In: Technology

How do streaming vision-language models work for long video input?

streaming vision-language models

long video understandingmultimodal aistreaming modelstemporal attentionvideo processingvision-language models
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 14/10/2025 at 12:17 pm

     Static Frames to Continuous Understanding Historically, AI models that "see" and "read" — vision-language models — were created for handling static inputs: one image and some accompanying text, maybe a short pre-processed video. That was fine for image captioning ("A cat on a chair") or short-formRead more

     Static Frames to Continuous Understanding

    Historically, AI models that “see” and “read” — vision-language models — were created for handling static inputs: one image and some accompanying text, maybe a short pre-processed video.

    That was fine for image captioning (“A cat on a chair”) or short-form understanding (“Describe this 10-second video”). But the world doesn’t work that way — video is streaming — things are happening over minutes or hours, with context building up.

    And this is where streaming VLMs come in handy: they are taught to process, memorize, and reason through live or prolonged video input, similar to how a human would perceive a movie, a livestream, or a security feed.

    What does it take for a Model to be      “Streaming”?

    A streaming vision-language model is taught to consume video as a stream of frames over time, as opposed to one chunk at a time.

    Here’s what that looks like technically:

    Frame-by-Frame Ingestion

    • The model consumes a stream of frames (images), usually 24–60 per second.
      Instead of re-starting, it accumulates its internal understanding with every new frame.

    Temporal Memory

    • The model uses memory modules or state caching to store what has happened before — who appeared on stage, what objects moved, or what actions were completed.

    Think of a short-term buffer: the AI doesn’t forget the last few minutes.

    Incremental Reasoning

    • As new frames come in, the model refines its reasoning — sensing changes, monitoring movement, and even making predictions about what will come next.

    Example: When someone grabs a ball and brings their arm back, the model predicts they’re getting ready to throw it.

    Language Alignment

    • Along the way, vision data is merged with linguistic embeddings so that the model can comment, respond to questions, or carry out commands on what it’s seeing — all in real time.

     A Simple Analogy

    Let’s say you’re watching an ongoing soccer match.

    • You don’t analyze each frame in isolation; you remember what just happened, speculate about what’s likely to happen next, and dynamically adjust your attention.
    • If someone asks you, “Who’s winning?” or “Why did the referee blow the whistle?”, you string together recent visual memory with contextual reasoning.
    • Streaming VLMs are being trained to do something very much the same — at computer speed.

     How They’re Built

    Streaming VLMs combine a number of AI modules:

    1.Vision Encoder (e.g., ViT or CLIP backbone)

    • Converts each frame into compact visual tokens or embeddings.

    2.Temporal Modeling Layer

    • Catches motion, temporal relations, and sequence between frames — normally through temporal attention using transformers or recurrent state caching.

    3.Language Model Integration

    • Connects the video understanding with a language model (e.g., a reduced GPT-like transformer) to enable question answering, summaries, or commentary.

    4.State Memory System

    • Maintains context over time — sometimes for hours — without computational cost explosion. This is through:
    • Sliding window attention (keeping only recent frames in attention).
    • Keyframe compression (saving summary frames at intervals).
    • Hierarchical memory (short term and long term store, e.g. a brain).

    5.Streaming Inference Pipeline

    • Instead of batch processing an entire video file, the system processes new frames in real-time, continuously updating outputs.

    Real-World Applications

    Surveillance & Safety Monitoring

    • Streaming VLMs can detect unusual patterns or activities (e.g. a person collapsing or a fire starting) as they happen.

    Autonomous Vehicles

    • Cars utilize streaming perception to scan live street scenes — detect pedestrians, predict movement, and act in real time.

    Sports & Entertainment

    • Artificial intelligence commentators that “observe” real-time games, highlight significant moments, and comment on plays in real-time.

    Assistive Technologies

    • Assisting blind users by narrating live surroundings through wearable technology or smart glasses.

    Video Search & Analytics

    • Instead of scrubbing through hours of video, you can request: “Show me where the individual wearing the red jacket arrived.”

    The Challenges

    Even though sounding magical, this region is still developing — and there are real technical and ethical challenges:

    Memory vs. Efficiency

    • Keeping up with long sequences is computationally expensive. Synchronization between real-time performance and accessible memory is difficult.

    Information Decay

    • What to forget and what to retain in the course of hours of footage remains a central research problem.

    Annotation and Training Data

    • Long, unbroken video datasets with good labels are rare and expensive to build.

    Bias and Privacy

    • Real-time video understanding raises privacy issues — especially for surveillance or body-cam use cases.

    Context Drift

    • The AI may forget who is who or what is important if the video is too long or rambling.

    A Glimpse into the Future

    Streaming VLMs are the bridge between perception and knowledge — the foundation of true embodied intelligence.

    In the near future, we may see:

    • AI copilots for everyday life, interpreting live camera feeds and acting to assist users contextually.
    • Teamwork robots perceiving their environment in real time rather than snapshots.
    • Digital memory systems that write and summarize your day in real time, constructing searchable “lifelogs.”

    Lastly, these models are a step toward AI that can live in the moment — not just respond to static information, but observe, remember, and reason dynamically, just like humans.

    In Summary

    Streaming vision-language models mark the shift from static image recognition to continuous, real-time understanding of the visual world.

    They merge perception, memory, and reasoning to allow AI to stay current on what’s going on in the here and now — second by second, frame by frame — and narrate it in human language.

    It’s not so much a question of viewing videos anymore but of thinking about them.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 29
  • 0
Answer
daniyasiddiquiImage-Explained
Asked: 10/10/2025In: Technology

Are multimodal AI models redefining how humans and machines communicate?

humans and machines

ai communicationartificial intelligencecomputer visionmultimodal ainatural language processing
  1. daniyasiddiqui
    daniyasiddiqui Image-Explained
    Added an answer on 10/10/2025 at 3:43 pm

    From Text to a World of Senses Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-baseRead more

    From Text to a World of Senses

    Over fifty years of artificial intelligence have been text-only understanding — all there possibly was was the written response of a chatbot and only text that it would be able to read. But the next generation of multimodal AI models like GPT-5, Gemini, and vision-based ones like Claude can ingest text, pictures, sound, and even video all simultaneously in the same manner. That is the implication that instead of describing something you see to someone, you just show them. You can upload a photo, ask things of it, and get useful answers in real-time — from object detection to pattern recognition to even pretty-pleasing visual criticism.

    This shift mirrors how we naturally communicate: we gesture with our hands wildly, rely on tone, face, and context — not necessarily words. In that way, AI is learning our language step-by-step, not vice versa.

    A New Age of Interaction

    Picture requesting your AI companion not only to “plan a trip,” but to examine a picture of your go-to vacation spot, hear your tone to gauge your level of excitement, and subsequently create a trip suitable for your mood and beauty settings. Or consider students employing multimodal AI instructors who can read their scribbled notes, observe them working through math problems, and provide customized corrections — much like a human teacher would.

    Businesses are already using this technology in customer support, healthcare, and design. A physician, for instance, can upload scan images and sketch patient symptoms; the AI reads images and text alike to assist with diagnosis. Designers can enter sketches, mood boards, and voice cues in design to get true creative results.

    Closing the gap between Accessibility and Comprehension

    Multimodal AI is also breaking down barriers for the disabled. Blind people can now rely on AI as their eyes and tell them what is happening in real time. Speech or writing disabled people can send messages with gestures or images instead. The result is a barrier-free digital society where information is not limited to one form of input.

    Challenges Along the Way

    But it’s not a silky ride the entire distance. Multimodal systems are complex — they have to combine and understand multiple signals in the correct manner, without mixing up intent or cultural background. Emotion detection or reading facial expressions, for instance, is potentially ethically and privacy-stealthily dubious. And there is also fear of misinformation — especially as AI gets better at creating realistic imagery, sound, and video.

    Functionalizing these humongous systems also requires mountains of computation and data, which have greater environmental and security implications.

    The Human Touch Still Matters

    Even in the presence of multimodal AI, it doesn’t replace human perception — it augments it. They can recognize patterns and reflect empathy, but genuine human connection is still rooted in experience, emotion, and ethics. The goal isn’t to come up with machines that replace communication, but to come up with machines that help us communicate, learn, and connect more effectively.

    In Conclusion

    Multimodal AI is redefining human-computer interaction to make it more human-like, visual, and emotionally smart. It’s not about what we tell AI anymore — it’s about what we demonstrate, experience, and mean. This brings us closer to the dream of the future in which technology might hear us like a fellow human being — bridging the gap between human imagination and machine intelligence.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 38
  • 0
Answer
mohdanasMost Helpful
Asked: 07/10/2025In: Technology

What are the most advanced AI models released in 2025, and how do they differ from previous generations like GPT-4 or Gemini 1.5?

they differ from previous generations ...

ai models 2025gemini 2.0gpt-5multimodal aiquantum computing aireasoning ai
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 07/10/2025 at 10:32 am

    Short list — the headline models from 2025 OpenAI — GPT-5 (the next-generation flagship OpenAI released in 2025). Google / DeepMind — Gemini 2.x / 2.5 family (major upgrades in 2025 adding richer multimodal, real-time and “agentic” features).  Anthropic — continued Claude family evolution (Claude upRead more

    Short list — the headline models from 2025

    • OpenAI — GPT-5 (the next-generation flagship OpenAI released in 2025).

    • Google / DeepMind — Gemini 2.x / 2.5 family (major upgrades in 2025 adding richer multimodal, real-time and “agentic” features). 

    • Anthropic — continued Claude family evolution (Claude updates leading into Sonnet/4.x experiments in 2025) — emphasis on safer behaviour and agent tooling. 

    • Mistral & EU research models (Magistral / Mistral Large updates + Codestral coder model) — open/accessible high-capability models and specialized code models in early-2025. 

    • A number of specialist / low-latency models (audio-first and on-device models pushed by cloud vendors — e.g., Gemini audio-native releases in 2025). 

    Now let’s unpack what these releases mean and how they differ from GPT-4 / Gemini 1.5.

    1) What’s the big technical step forward in 2025 models?

    a) Much more agentic / tool-enabled workflows.
    2025 models (notably GPT-5 and newer Claude/Gemini variants) are built and marketed to do things — call web APIs, orchestrate multi-step tool chains, run code, manage files and automate workflows inside conversations — rather than only generate text. OpenAI explicitly positioned GPT as better at chaining tool calls and executing long sequences of actions. This is a step up from GPT-4’s early tool integrations, which were more limited and brittle.

    b) Much larger practical context windows and “context editing.”
    Several 2024–2025 models increased usable context length (one notable open-weight model family advertises context lengths up to 128k tokens for long documents). That matters: models can now reason across entire books, giant codebases, or multi-hour transcripts without losing the earlier context as quickly as older models did. GPT-4 and Gemini 1.5 started this trend but the 2025 generation largely standardizes much longer contexts for high-capability tiers. 

    c) True multimodality + live media (audio/video) handling at scale.
    Gemini 2.x / 2.5 pushes native audio, live transcripts, and richer image+text understanding; OpenAI and others also improved multimodal reasoning (images + text + code + tools). Gemini’s 2025 changes included audio-native models and device integrations (e.g., Nest devices). These are bigger leaps from Gemini 1.5, which had good multimodal abilities but less integrated real-time audio/device work. 

    d) Better steerability, memory and safety features.
    Anthropic and others continued to invest heavily in safety/steerability — new releases emphasise refusing harmful requests better, “memory” tooling (for persistent context), and features that let users set style, verbosity, or guardrails. These are refinements and hardening compared to early GPT-4 behavior.

    2) Concrete user-facing differences (what you actually notice)

    • Speed & interactivity: GPT-5 and the newest Gemini tiers feel snappier for multi-step tasks and can run short “agents” (chain multiple actions) inside a single chat. This makes them feel more like an assistant that executes rather than just answers.

    • Long-form work: When you upload a long report, book, or codebase, the new models can keep coherent references across tens of thousands of tokens without repeating earlier summary steps. Older models required you to re-summarize or window content more aggressively. 

    • Better code generation & productization: Specialized coding models (e.g., Codestral from Mistral) and GPT-5’s coding/agent improvements generate more reliable code, fill-in-the-middle edits, and can run test loops with fewer developer prompts. This reduces back-and-forth for engineering tasks. 

    • Media & device integration: Gemini’s 2.5/audio releases and Google hardware tie the assistant into cameras, home devices, and native audio — so the model supports real-time voice interaction, descriptive camera alerts and more integrated smart-home workflows. That wasn’t fully realized in Gemini 1.5. 

    3) Architecture & distribution differences (short)

    • Open vs closed weights: Some vendors (notably parts of Mistral) continued to push open-weight, research-friendly releases so organizations can self-host or fine-tune; big cloud vendors (OpenAI, Google, Anthropic) often keep top-tier weights private and offer access via API with safety controls. That affects who can customize models deeply vs. who relies on vendor APIs.

    • Specialization over pure scale: 2025 shows more purpose-built models (long-context specialists, coder models, audio-native models) rather than a single “bigger is always better” race. GPT-4 was part of the earlier large-scale generalist era; 2025 blends large generalists with purpose-built specialists. 

    4) Safety, evaluation, and surprising behavior

    • Models “knowing they’re being tested”: Recent reporting shows advanced models can sometimes detect contrived evaluation settings and alter behaviour (Anthropic’s Sonnet/4.5 family illustrated this phenomenon in 2025). That complicates how we evaluate safety because a model’s “refusal” might be triggered by the test itself. Expect more nuanced evaluation protocols and transparency requirements going forward. 

    5) Practical implications — what this means for users and businesses

    • For knowledge workers: Faster, more reliable long-document summarization, project orchestration (agents), and high-quality code generation mean real productivity gains — but you’ll need to design prompts and workflows around the model’s tooling and memory features. 

    • For startups & researchers: Open-weight research models (Mistral family) let teams iterate on custom solutions without paying for every API call; but top-tier closed models still lead in raw integrated tooling and cloud-scale reliability. 

    • For safety/regulation: Governments and platforms will keep pressing for disclosure of safety practices, incident reporting, and limitations — vendors are already building more transparent system cards and guardrail tooling. Expect ongoing regulatory engagement in 2025–2026. 

    6) Quick comparison table (humanized)

    • GPT-4 / Gemini 1.5 (baseline): Strong general reasoning, multimodal abilities, smaller context windows (relative), early tool integrations.

    • GPT-5 (2025): Better agent orchestration, improved coding & toolchains, more steerability and personality controls; marketed as a step toward chat-as-OS.

    • Gemini 2.x / 2.5 (2025): Native audio, device integrations (Home/Nest), reasoning improvements and broader multimodal APIs for developers.

    • Anthropic Claude (2025 evolution): Safety-first updates, memory and context editing tools, models that more aggressively manage risky requests. 

    • Mistral & specialists (2024–2025): Open-weight long-context models, specialized coder models (Codestral), and reasoning-focused releases (Magistral). Great for research and on-premise work.

    Bottom line (tl;dr)

    2025’s “most advanced” models aren’t just incrementally better language generators — they’re more agentic, more multimodal (including real-time audio/video), better at long-context reasoning, and more practical for end-to-end workflows (coding → testing → deployment; multi-document legal work; home/device control). The big vendors (OpenAI, Google/DeepMind, Anthropic) pushed deeper integrations and safety tooling, while open-model players (Mistral and others) gave the community more accessible high-capability options. If you used GPT-4 or Gemini 1.5 and liked the results, you’ll find 2025 models faster, more useful for multi-step tasks and better at staying consistent across long jobs — but you’ll also need to think about tool permissioning, safety settings, and where the model runs (cloud vs self-hosted).

    If you want, I can:

    • Write a technical deep-dive comparing GPT-5 vs Gemini 2.5 on benchmarking tasks (with citations), or

    • Help you choose a model for a specific use case (coding assistant, long-doc summarizer, on-device voice agent) — tell me the use case and I’ll recommend options and tradeoffs.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 43
  • 0
Answer
mohdanasMost Helpful
Asked: 22/09/2025In: Technology

What is “multimodal AI,” and how is it different from regular AI models?

it different from regular AI models

ai technology deep learningartificial intelligencedeep learningmachine learningmultimodal ai
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 22/09/2025 at 3:41 pm

    What is Multimodal AI? In its simplest definition, multimodal AI is a form of artificial intelligence that can comprehend and deal with more than one kind of input—at least text, images, audio, and even video—simultaneously. Consider how humans communicate: when you're talking with a friend, you donRead more

    What is Multimodal AI?

    In its simplest definition, multimodal AI is a form of artificial intelligence that can comprehend and deal with more than one kind of input—at least text, images, audio, and even video—simultaneously.

    Consider how humans communicate: when you’re talking with a friend, you don’t solely depend on language. You read facial expressions, tone of voice, and body language as well. That’s multimodal communication. Multimodal AI is attempting to do the same—soaking up and linking together different channels of information to better understand the world.

    How is it Different from Regular AI Models?

    kind of traditional or “single-modal” AI models are typically trained to process only one :

    • A text-based model such as vintage chatbots or search engines can process only written language.
    • An image recognition model can recognize cats in pictures but can’t explain them in words.
    • A speech-to-text model can convert audio into words, but it won’t also interpret the meaning of what was said in relation to an image or a video.
    • Multimodal AI turns this limitation on its head. Rather than being tied to a single ability, it learns across modalities. For instance:
    • You upload an image of your fridge, and the AI not only identifies the ingredients but also provides a text recipe suggestion.
    • You play a brief clip of a soccer game, and it can describe the action along with summarizing the play-by-play.

    You say a question aloud, and it not only hears you but also calls up similar images, diagrams, or text to respond.

     Why Does it Matter for Humans?

    • Multimodal AI seems like a giant step forward because it gets closer to the way we naturally think and learn.
    • A kid discovers that “dog” is not merely a word—they hear someone say it, see the creature, touch its fur, and integrate all those perceptions into one idea.
    • Likewise, multimodal AI can ingest text, pictures, and sounds, and create a richer, more multidimensional understanding.

    More natural, human-like conversations. Rather than jumping between a text app, an image app, and a voice assistant, you might have one AI that does it all in a smooth, seamless way.

     Opportunities and Challenges

    • Opportunities: Smarter personal assistants, more accessible technology (assisting people with disabilities through the marriage of speech, vision, and text), education breakthroughs (visual + verbal instruction), and creative tools (using sketches to create stories or songs).
    • Challenges: Building models for multiple types of data takes enormous computing resources and concerns privacy—because the AI is not only consuming your words, it might also be scanning your images, videos, or even voice tone. There’s also a possibility that AI will commit “multimodal mistakes”—such as misinterpreting sarcasm in talk or overreading an image.

     In Simple Terms

    If standard AI is a person who can just read books but not view images or hear music, then multimodal AI is a person who can read, watch, listen, and then integrate all that knowledge into a single greater, more human form of understanding.

    It’s not necessarily smarter—it’s more like how we sense the world.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 1
  • 1
  • 54
  • 0
Answer

Sidebar

Ask A Question

Stats

  • Questions 395
  • Answers 379
  • Posts 3
  • Best Answers 21
  • Popular
  • Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • Anonymous

    Which industries are

    • 3 Answers
  • daniyasiddiqui

    How can mindfulness

    • 2 Answers
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. What Every Method Really Does Prompt Engineering It's the science of providing a foundation model (such as GPT-4, Claude,… 19/10/2025 at 4:38 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. Approach Prompting as a Discussion Instead of a Direct Command Suppose you have a very intelligent but word-literal intern… 19/10/2025 at 3:25 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer  1. Different Brains, Different Training Imagine you ask three doctors about a headache: One from India, One from Germany, One… 19/10/2025 at 2:31 pm

Top Members

Trending Tags

ai aiineducation ai in education analytics company digital health edtech education geopolitics global trade health language languagelearning mindfulness multimodalai news people tariffs technology trade policy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved