Sign Up

Sign Up to our social questions and Answers Engine to ask questions, answer people’s questions, and connect with other people.

Have an account? Sign In


Have an account? Sign In Now

Sign In

Login to our social questions & Answers Engine to ask questions answer people’s questions & connect with other people.

Sign Up Here


Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.


Have an account? Sign In Now

You must login to ask a question.


Forgot Password?

Need An Account, Sign Up Here

You must login to add post.


Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

Qaskme

Qaskme Logo Qaskme Logo

Qaskme Navigation

  • Home
  • Questions Feed
  • Communities
  • Blog
Search
Ask A Question

Mobile menu

Close
Ask A Question
  • Home
  • Questions Feed
  • Communities
  • Blog
Home/neuralnetworks
  • Recent Questions
  • Most Answered
  • Answers
  • No Answers
  • Most Visited
  • Most Voted
  • Random
mohdanasMost Helpful
Asked: 05/11/2025In: Technology

What is a Transformer architecture, and why is it foundational for modern generative models?

a Transformer architecture

aideeplearninggenerativemodelsmachinelearningneuralnetworkstransformers
  1. daniyasiddiqui
    daniyasiddiqui Editor’s Choice
    Added an answer on 06/11/2025 at 11:13 am

    Attention, Not Sequence: The major point is Before the advent of Transformers, most models would usually process language sequentially, word by word, just like one reads a sentence. This made them slow and forgetful over long distances. For example, in a long sentence like. "The book, suggested by tRead more

    Attention, Not Sequence: The major point is

    Before the advent of Transformers, most models would usually process language sequentially, word by word, just like one reads a sentence. This made them slow and forgetful over long distances. For example, in a long sentence like.

    • “The book, suggested by this professor who was speaking at the conference, was quite interesting.”
    • Earlier models often lost track of who or what the sentence was about because information from earlier words would fade as new ones arrived.
    • This was solved with Transformers, which utilize a mechanism called self-attention; it enables the model to view all words simultaneously and select those most relevant to each other.

    Now, imagine reading that sentence but not word by word; in an instant, one can see the whole sentence-your brain can connect “book” directly to “fascinating” and understand what is meant clearly. That’s what self-attention does for machines.

    How It Works (in Simple Terms)

    The Transformer model consists of two main blocks:

    • Encoder: This reads and understands the input for translation, summarization, and so on.
    • Decoder: This predicts or generates the next part of the output for text generation.

    Within these blocks are several layers comprising:

    • Self-Attention Mechanism: It enables each word to attend to every other word to capture the context.
    • Feed-Forward Neural Networks: These process the contextualized information.
    • Normalization and Residual Connections: These stabilize training, and information flows efficiently.

    With many layers stacked, Transformers are deep and powerful, able to learn very rich patterns in text, code, images, or even sound.

    Why It’s Foundational for Generative Models

    Generative models, including ChatGPT, GPT-5, Claude, Gemini, and LLaMA, are all based on Transformer architecture. Here is why it is so foundational:

    1. Parallel Processing = Massive Speed and Scale

    Unlike RNNs, which process a single token at a time, Transformers process whole sequences in parallel. That made it possible to train on huge datasets using modern GPUs and accelerated the whole field of generative AI.

    2. Long-Term Comprehension

    Transformers do not “forget” what happened earlier in a sentence or paragraph. The attention mechanism lets them weigh relationships between any two points in text, resulting in a deep understanding of context, tone, and semantics so crucial for generating coherent long-form text.

    3. Transfer Learning and Pretraining

    Transformers enabled the concept of pretraining + fine-tuning.

    Take GPT models, for example: They first undergo training on massive text corpora (books, websites, research papers) to learn to understand general language. They are then fine-tuned with targeted tasks in mind, such as question-answering, summarization, or conversation.

    Modularity made them very versatile.

    4. Multimodality

    But transformers are not limited to text. The same architecture underlies Vision Transformers, or ViT, for image understanding; Audio Transformers for speech; and even multimodal models that mix and match text, image, video, and code, such as GPT-4V and Gemini.

    That universality comes from the Transformer being able to process sequences of tokens, whether those are words, pixels, sounds, or any kind of data representation.

    5. Scalability and Emergent Intelligence

    This is the magic that happens when you scale up Transformers, with more parameters, more training data, and more compute: emergent behavior.

    Models now begin to exhibit reasoning skills, creativity, translation, coding, and even abstract thinking that they were never taught. This scaling law forms one of the biggest discoveries of modern AI research.

    Earth Impact

    Because of Transformers:

    • It can write essays, poems, and even code.
    • Google Translate became dramatically more accurate.
    • Stable Diffusion and DALL-E generate photorealistic images influenced by words.
    • AlphaFold can predict 3D protein structures from genetic sequences.
    • Search engines and recommendation systems understand the user’s intent more than ever before.

    Or in other words, the Transformer turned AI from a niche area of research into a mainstream, world-changing technology.

     A Simple Analogy

    Think of the old assembly line where each worker passed a note down the line slow, and he’d lost some of the detail.

    Think of a modern sort of control room, Transformer, where every worker can view all the notes at one time, compare them, and decide on what is important; that is the attention mechanism. It understands more and is quicker, capable of grasping complex relationships in an instant.

    Transformers Glimpse into the Future

    Transformers are still evolving. Research is pushing its boundaries through:

    • Sparse and efficient attention mechanisms for handling very long documents.
    • Retrieval-augmented models, such as ChatGPT with memory or web access.
    • Mixture of Experts architectures to make models more efficient.
    • Neuromorphic and adaptive computation for reasoning and personalization.

    The Transformer is more than just a model; it is the blueprint for scaling up intelligence. It has redefined how machines learn, reason, and create, and in all likelihood, this is going to remain at the heart of AI innovation for many years ahead.

    In brief,

    What matters about the Transformer architecture is that it taught machines how to pay attention to weigh, relate, and understand information holistically. That single idea opened the door to generative AI-making systems like ChatGPT possible. It’s not just a technical leap; it is a conceptual revolution in how we teach machines to think.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 75
  • 0
Answer
mohdanasMost Helpful
Asked: 24/09/2025In: Technology

Can AI models really shift between “fast” instinctive responses and “slow” deliberate reasoning like humans do?

Fast Vs Slow

artificialintelligencecognitivesciencefastvsslowthinkinghumancognitionmachinelearningneuralnetworks
  1. mohdanas
    mohdanas Most Helpful
    Added an answer on 24/09/2025 at 10:11 am

    The Human Parallel: Fast vs. Slow Thinking Psychologist Daniel Kahneman popularly explained two modes of human thinking: System 1 (fast, intuitive, emotional) and System 2 (slow, mindful, rational). System 1 is the reason why you react by jumping back when a ball rolls into the street unexpectedly.Read more

    The Human Parallel: Fast vs. Slow Thinking

    Psychologist Daniel Kahneman popularly explained two modes of human thinking:

    • System 1 (fast, intuitive, emotional) and System 2 (slow, mindful, rational).
    • System 1 is the reason why you react by jumping back when a ball rolls into the street unexpectedly.
    • System 2 is the reason why you slowly consider the advantages and disadvantages before deciding to make a career change.

    For a while now, AI looked to be mired only in the “System 1” track—churning out fast forecasts, pattern recognition, and completions without profound contemplation. But all of that is changing.

    Where AI Exhibits “Fast” Thinking

    Most contemporary AI systems are virtuosos of the rapid response. Pose a straightforward fact question to a chatbot, and it will likely respond in milliseconds. That speed is a result of training methods: models are trained to output the “most probable next word” from sheer volumes of data. It is reflexive because it is — the model does not stop, hesitate, or calculate unless it has been explicitly programmed to.

    Examples:

    • Autocomplete in your email.
    • Rapid translations in language apps.
    • Instant responses such as “What is the capital of France?”
    • Such tasks take minimal “deliberation.”

    Where AI Struggles with “Slow” Thinking

    The more difficult challenge is purposeful reasoning—where the model needs to slow down, think ahead, and reflect. Programmers have been trying techniques such as:

    • Chain-of-thought prompting – prompting the model to “show its work” by describing reasoning steps.
    • Self-reflection loops – where the AI creates an answer, criticizes it, and then refines it.
    • Hybrid approaches – using AI with symbolic logic or external aids (such as calculators, databases, or search engines) to enhance accuracy.

    This simulates System 2 reasoning: rather than blurring out the initial guess, the AI tries several options and assesses what works best.

    The Catch: Is It Actually the Same as Human Reasoning?

    Here’s where it gets tricky. Humans have feelings, intuition, and stakes when they deliberate. AI doesn’t. When a model slows down, it isn’t because it’s “nervous” about being wrong or “weighing consequences.” It’s just following patterns and instructions we’ve baked into it.

    So although AI can mimic quick vs. slow thinking modes, it does not feel them. It’s like seeing a magician practice — the illusion is the same, but the motivation behind it is entirely different.

    Why This Matters

    If AI can shift trustably between fast instinct and slow reasoning, it transforms how we trust and utilize it:

    • Healthcare: Fast pattern recognition for medical imaging, but slow reasoning for medical treatment.
    • Education: Brief answers for practice exercises, but in-depth explanations for important concepts.
    • Business: Brief market overviews, but sound analysis when millions of dollars are at stake.

    The ideal is an AI that knows when to take it easy—just like a good physician won’t rush a diagnosis, or a good driver won’t drive fast in the storm.

    The Humanized Takeaway

    AI is beginning to learn both caps—sprinter and marathoner, gut-reactor and philosopher. But the caps are still disguises, not actual experience. The true breakthrough won’t be in getting AI to slow down so that it can reason, but in getting AI to understand when to change gears responsibly.

    Until now, the responsibility is partially ours—users, developers, and regulators—to provide the guardrails. Just because AI can respond quickly doesn’t mean that it must.

    See less
      • 0
    • Share
      Share
      • Share on Facebook
      • Share on Twitter
      • Share on LinkedIn
      • Share on WhatsApp
  • 0
  • 1
  • 97
  • 0
Answer

Sidebar

Ask A Question

Stats

  • Questions 501
  • Answers 493
  • Posts 4
  • Best Answers 21
  • Popular
  • Answers
  • daniyasiddiqui

    “What lifestyle habi

    • 6 Answers
  • Anonymous

    Bluestone IPO vs Kal

    • 5 Answers
  • mohdanas

    Are AI video generat

    • 4 Answers
  • James
    James added an answer Play-to-earn crypto games. No registration hassles, no KYC verification, transparent blockchain gaming. Start playing https://tinyurl.com/anon-gaming 04/12/2025 at 2:05 am
  • daniyasiddiqui
    daniyasiddiqui added an answer 1. The first obvious ROI dimension to consider is direct cost savings gained from training and computing. With PEFT, you… 01/12/2025 at 4:09 pm
  • daniyasiddiqui
    daniyasiddiqui added an answer 1. Elevated Model Complexity, Heightened Computational Power, and Latency Costs Cross-modal models do not just operate on additional datatypes; they… 01/12/2025 at 2:28 pm

Top Members

Trending Tags

ai aiethics aiineducation analytics artificialintelligence company digital health edtech education generativeai geopolitics health language news nutrition people tariffs technology trade policy tradepolicy

Explore

  • Home
  • Add group
  • Groups page
  • Communities
  • Questions
    • New Questions
    • Trending Questions
    • Must read Questions
    • Hot Questions
  • Polls
  • Tags
  • Badges
  • Users
  • Help

© 2025 Qaskme. All Rights Reserved